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FOREWORD

The concept to use satellite solar power stations as energy
sources fbr earth application was proposed by Dr. Peter Glaser of Arthur
D. Little, Incorporated, in 1968. A feasibility study of the concept,
with simultaneous identification of key issues, was sponsored by the
National Aeronautics and Space Administration (NASA) in 1972. Additional
studies are currently in progress under joint sponsorship of NASA and the

Energy Research and Development Administration (ERDA).

As part of the concept assessment, NASA in May of 1974
requested the Jet Propulsion Laboratory (JPL) to initiate development of a
data base for candidate future terrestrial power systems in order to
evaluate the proposed satellite power systems. The terrestrial power
plant types included likely fossil and nuclear energy systems and solar
energy systems which would be available around the year 2000. Data devel-
opment includea system performance, operations, cost and impact. NASA
also requested JPL to conduct an initial comparison of the earth-based and
space~based energy configurations, employing the terrestrial power system
data developed at JPL and the orbital power system data being developed
concurrently by ‘the Marshall Space Flight Center (MSFC) and the Johnson
Space Center (JSC).

This report summarizes the work performed by JPL to provide
a data base for candidate future terrestrial power systems and presents
a preliminary comparison of these systems with a satellite photovoltaic

power system.

This study was sponsored by the NASA Office of Energy Programs
and was performed under the technical directiun of Mr. Simon V. Maason

of the Solar Energy Division.
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SECTION I

EXECUTIVE SUMMARY

In this report orbital solar power plants, wnich beam power
to earth by microwave, are compared with ground~based solar1 and conven-
tional baseload power plants. Candidate systems were identified for
three types of plants and the selected plant designs were then compared
on the basis of economic and social costs. The representative types of

plants selected for the comparison are:
1) C nventional
® Light water nuclear reactor
® = Turbines using low BTU gas from coal
2) Grc .d Solar

o .entral receiver wita steam turbo-electric con-

version and thermal storage

° Silicon photovoltaic power plant without tracking
and including colar concentration and redox bat-

tery storage
3) Orbital Solar (Satellite Power System)
Y Silicon photovoltaics

Table 1-1 shows the estimates of the capital costs of these
plants assuming a year 2000 plant startup, but using 1975 dollars. As
may be seen, the capital cost of the orbital photovoltaic plant (esti-
mated at 5600 $/kWe of rated power) is approximately the same as for the
ground solar photovoltaic with fossil backup. The costs of both of these
systems are about two and one-half to five times.the anticipated future
costs of conventional plants. The ground solar thermal plant with fossil
backup 1s about one third less capital intensive as the Satellite Power

Syutem (SPS).

lA base load plant is considared to have an annual load factor of at

least 0.7, Extra margin is evaluated to maintain grid reliability.

1-1
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The 1evelized2 bus-bar energy cost of the SPS plant (orbital

protovoltaic) is estimated to be 118 mills/kWeh. This assumes a 4 mil
thick solar cell design, and does not include the cost of the payback of
the SPS development cost. The energy cost of the SPS at the reference
design point is about the same as the ground sriar ohotovoltaic plant,
but is more than 70% greater than that of conventional plants and 30%

greater than ground solar thermal witb fossil backup.

If all the best and all the worst estimates of performance
and cost are co.nbined, thea SPS energy cost would vary from about 40 to
over 400 mills/F ’'<i, as uhown in Figrve 1-1. This figure illustrates the
wide range of uncertainty associated with an energy system which is at
the conceptual stage of development. The ground photovoltaic cost range
is from 74 to 210 mills/kWeh. The expected cost ranges of the coal, nuclear
and ground solar thermal power plants are similar in the year 20C) time
frame although the energy cost of the coal plant has the smallest uncer-

tainty range.

Total energy costs, including the cost of transmission and
distribution, were also determined for eesch approach. The probable trans-
mission distances between the plant and load centers were identified for
use some time after the year 2000. Overhead ac lines were assumed
for distances up to 300 miles, and overhead dc lines were specified for
distances greater than 300 miles. The costs of long distance transmis-
sion and distribution within the load center were added to the power
plant cost of electricity to achieve the system or total cost of electri-
city. The total energy costs were only about 207% greater than the power
plant bus~bar costs. The relative costs among the varicus plants remained
constant even though the transmission distance varied by a factor of 7
among the different types of plants (300 miles for cc~1 and 2000 miles

for ground solar).

Although the plants selected for comparison are all baseload
central electric plants, there arz great Jdifferences among them. There
differences resul* in significant v -:a%ions in cost uncertainty. The

LWR nuclear plant i. an existing cnmen:cfal plant, but face:s strong and

2'I.eveli.-.ed encrgy cost is approximately the average cost of energy over
the 11fe of the plant. It considers fixed (capital poytuck) anc 7ariable
(operating) costs and includes cost escalation.

i-4
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broad social resistance which may require significant, costly changes.
There is also resistance to coal plants, although it is not as pro-
nounced at this time. Ground solar thermal plants are in the early stage
of development and have large potential cost uncertainties normal to

this stage in development. Competitive economics for the ground photo-
voltaic power plant are based on attaining the 1985 ERDA goal of $0.50/
Wepeak for the photovoltaic modules, and the lower bound is based on
$0.20/Wepeak and improved efficiency. The rest of this system uses
state-of-the-art subsystems with the exception of the advanced Redox
battery storage subsystem. The orbital photovoltaic system shares the
uncertainty of the silicon cell costs with the ground photovoltaic plant,
but ir addition has many other major subsystem cost and performance

uncertainties.

The ground solar--fossil hybrid plant ass'mes an annual aver-
age load factor3 of G.70 for the solar part of the r.ant and 0.864 for
the total plant. This is attained by locating the plant in the South~
west USA, having about 9 hours solar storage capacity available at the
plant, and providing extra backup capacity (margin) in the form of gassi-
fied coal energy to make the ground solar plant as reliable as conven-
tional plants not subject to the sporadic unavailability of sunlight.

The backup system increases the capital cost of a ground solar plant by
about 8%. However, the energy costs ($/kWh) are lowered by 7% because
the added energy capability produced by the backup system is less expen-

sive than the energy produced by a solar stand-alone plant.

Although the SPS is considered to have a high annual load
factor (=0.9), it will also require extra backup capacity just due to
its large size (5000 MWe). Any plant of this size introduces unreli
abilities into a utility grid, but the magnitude of the needed extra

margin is unknown at this time.

In addition to capital and energy costs, a number of other
areas of concern are compared in this assessment. The other areas con-
sidered are Federal Research, Development and Demonstration (RD&D) costs,
resource utilization, health costs, environmental costs, and "other"
social costs. The utility or consumer costs plus the variety of social

costs taken together represent the 'true' total cost of the system.

3Load factor is the actual energy generated/rated energy.
1-6
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However, summing these costs is difficult because the data are in differ-~
ent currencles; l.e., consumer dollars, Federal tax dollars, tons of

steel, BTUs of excess waste heat, deaths, etc.

The Federal RD&D costs to bring a plant concept to commer-
cialization are shown in Table 1-1. The SPS is estimated to cost $60 B
(billion dollars). This cost is significantly greater than that of all
the other alternatives which are in the $0.3 to $1.5 B range. The
government is presently also developing the liquid-metal fast-breeder
reactor (IMFBR). Although it was not selected as the reference nuclear
system, it potentially will be a viable candidate after the year 2000.
RD&D costs for the LMFBR (not shown in Table 1-1) are estimated to be
at least $10 B.

I1f RD&D costs are spread over the first 30 years of commer-
cial energy generation, the levelized energy cost is from 8 to 40 mills/
kWeh4 for the SPS using a 102 social discount rate. On the same basis
the ground solar and conventional plants would have less than 1 mill/
kWeh energy charge to pay back the RD&D. Again, the only exception is

the IMFBR whose RD&D energy charge would be 1 to 7 mills/kWeh.

The estimates for maximum health impacts for the various
types of plants are shown in Table 1-1. These are for the fuel cycle,
material acquisition and the construction phases of the plant life.

The health impacts of the SPS are presently unknown, but health impacts
could come from several sources. Occupational health impacts will occur
due to industrial accidents during material acquisition, launch opera-
tions, space construction and operation as well as rectemna construction
and operation. 1In addition to typiral industrial accidents, there is

the potential that several unique occupational hazards exist with the

SPS due to launch activities, extra vehicular activity in space, SPS
space charge, meteroroid strikes, solar flares and other space phenomena,
the natural radiation environment in geosynclironous orbit, the microwave
radiation environment near the transmitter, and possibly even &+ the

receiver on the ground.

Public health hazards from launch rocket emissions exist

with the SPS. Also the geosynchronous tug and station keeping propellants

4The range of equivalent energy cost to payback the RD&D cost is due to
the range of new plant installation.
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(lonized particles) could cause additional public hazards. The microwave
beam could cause indirect public health effects due to atmospheric effects,
or direct public health effects near the rectenna. Finally, there is

the potential catastrophic public health impact of a launch vehicle or

space station items falling on a populated area.

Of the ground power plants, as may be seen in Table 1-1, the
"clean" coal plant has the greatest maximum total health effects of about
200 people days lost (PDL) per MWeyr5 of energy génerated. These are
derived from a variety of causes such as the occupational health effects
due to mining coal, and the public health effects of SOx emissions at
the plant (CO, Nox and other pollutants are neglected), the public
health hazards at railroad crossings due to collisions with coal trains
and the waste products from mines and power plants.

Ground solar plants have between 3 and 7 PDL/MWeyr due pri-
marily to occupational accidents during construction, and to a lesser
extent to occupational accidents ard illness during material acquisition.
The public health impact of solér stand-alone plants is almost nil, and
what there is, is due to emission from the primary metal fabrication
plants which make the steel, aluminum, concrete and glass for the plant.
However, the total health impacts increase by about 10% of that of the
reference coal plant where the solar plant is operated as a hybrid using

coal as the backup energy source, and could be as large as 13 PDL/MWeyr.

The LWR nuclear plant health impacts lie between that of
ground solar and that of coal plants with a maximum estimated impact of
17 PDL/MWeyr. The effects of the catastrcohic accidents include only
direct deaths and does not include person days lost due to illness, injury,
genetic effects and property damage as a result of core melt-down. The
possibilities of blackmail, sabotage and material diversion to a weapon
are neglected, as are health effects of long-term waste disposal and large

accidents at other fuel cycle facilities.

As shown in Table 1-1, land use of the SPS is 2800 mZ/MWeyr

.(for a microwave intensity of 0.1 mw/cm2 at the outer boundary of the

exclusion area). This is somewhat less than a ground solar thermal

5As a reference point, 100 PDL/MWeyr is equivalent to 2.4 hours of indis-
position for each year for the electric energy use by the average person
in society.
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plant (3600 n?/Mieyr) nd a coal plant (3600 m’/MWeyr). This total
includes land used for transmission right-of-way which is greatest

for a ground solar plant based on 1650 mile average transmission link.
The LWR is lowest at 800 mZIMWeyr while the ground photovoltaic plant is
highest at 5400 mZ/MWeyr. The LWR land use will increase dramatically
toward the end of the century as current high grade ores are depleted.
Only the timely introduction of the breeder reactor will prevent this
large land consumption for uranium mining. The land used at the plant is
almost the same for orbital and ground solar thermal plants (approximately
2200 mZ/MWeyr). However, if the Eastern European microwave standard is
used, the SPS plant land use would triple.

The SPS and the ground solar thermal plants have a very favor-
able excess waste heat balance and only add about 0.25 MWyr thermal energy
per MWeyr to the biosphere compared to 1.5 MWtyr/MWeyr for ground photo-
voltaics, 1.7 MWtyr/MWeyr for coal and 2.0 MWtyr/MWeyr for nuclear.

The SPS will use almost no water except for launch operations
and rectenna maintenance (cleaning) which should be quite small. The
use of dry cooling techniques with ground solar thermal plants will reduce
cooling water requirements to zero, but other plant water requirements
will be about 1 million liter/MWeyr. The ground photovoltaic plant will
u3de half this amount of water, mainly for collector surface cleaning.
The water use of a LWR is significant at 24 million liter/MWeyr when
wet cooling techniques are used; but decreases to 1 to 2% of this value

if dry cooling towers were introduced.

As shown in Table 1-1, the material required bLy the SPS is
estimated at 19 MT/MWeyr and manpower is estimated at 6700 MH/MWeyr. The
total material and manpower requirements are greatest for the ground
solar thermal plant at 225 tons/MWeyr (excluding thermal storage) and
14,400 man hours/MWeyr. Glass production must be increased significantly
by the year 2015, and 0.2 million men could be employed in construction
if plants were built at the rate of 10 GWe per year. The coal plant has
the lowest construction material requirements (6.1 tons/MWeyr), while
the LWI +lant has the lowest manpower reéai;gﬁiifi‘fiieo\ggg\houre/

MWeyr). T

W G
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Items which could not be quantified for inclusion in Table 1-~1
but which may be of considerable concern have been labeled as "other
soclal costs” and refer to such items having characteristics that are
non-quantitative or that are quantitatively known but for which the
effects are poorly understood. An example of the first would be the
deg "ee of catastrophe associated with a health effect. There apparently
is greater perceived social cost (impact) if an energy system's health
effects occur all at once in time and location (i.e., nuclear core melt~
down or an orbital launch vehicle falling on a population center), ver-
sus a more even distribution of health effects (i.e., from coal plants).
An example of a poorly understood but quantitatively known effect would
be the amount of 002 and particulates which are released from a coal fuel
cycle. The magnitude is known but the global climatic effects are not

well known, nor are the ramifications of these potential climate changes.

A listing of some of these important yet difficult factors
to quantify is presented:

1) The social impacts of sabotage or blackmail perpetrated

against a power plant.

2) The possibility of material diversion to use as a

weapon.
3) The catastrophic nature of accidents.

4) The duration and temporal distribution of an impact.

5) The vulnerability to a military attack either directly
or indirectly.

6) The environmental and health effects of:
a) Excess waste heat.
b) CO2 particulates, and Kr-85.

c) Acid rain.

d) Long~term toxic wastes.
e) Microwave beam to earth.
£) Boost vehicles emission throughout the atmosphere

including the magnetosphere.

1-10
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7
8)

9)
10)

11)

12)
13)

The health impacts of noise.

The use of non~-renewable rather than renewable or

salvageable resources.
Conflicting land use.

Local disruption due to initial construction and opera-

tion over plant life.

Communication and radio-astronomy interference due to

microwave transmission.
Aesthetic impacts.

Legal or liability concerns.

In summary, this comparative assessment is an attempt to

compile in a consistent framework, the available data describing the

economic and social characteristics of a number of central electric base~

load power plants.

In the final analysis, choosing the mix of technolo-

gles for future power production 18 a social decision and needs broad

input from throughout society so that we have some assurances that the

system coming on line 15 to 30 years from now will be socially acceptable.

This report makes an attempt to provide quantifiable data required to

permit these complex decisions to be made.
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SECTION II

INTRODUCTION

A comparison is made of the economic and social characteristics
of the Satellite Power System (SPS) with those of conventional and solar
terrestrial power plants. The study assumes that in making the compari-
son, the broadest view should be taken of what actually forms the ingre-
dients for social suitabiliity. The concept of total social cost is used
as the basis for the evaluation. The total social cost includes utility
cost of commercial generation and of electric energy delivery as well as
the consideration of social costs involved. These include areas such
as the Federal RD&D investment to create a commercial demonstration, the
energy payback requirements, the health effects of the entire series of
activities required to bring on line and operate a powe: plant, environ-

ment impacts, resource consumption and other impacts.

In conducting this study, no a priori judgment was made
regarding the social or economic desirability of the SPS; rather, the
study tries to present the economic and social factors of the SPS and

alternate systems as well as they are known today.

The SPS and alternative central power plants were compared
using a consistent assessment framework. All of the systems were evalu-
ated over the same time period with the same economic ground rules and
with a consistent set of resource, envircnmental and health impact

parameters.

The following central electric power systems were selected
for comparison since they may be in siguificant use in the United States

toward the end of this century and into early next century:
(1) Fossil Fueled Systems

a) A coal system with low BTU gasification and

combined cycle combustion.*

b) A coal fired system with fluidized bed combustion.

*
Reference Design,
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c)

d)

A coal fired system with a line scrubber for flue
gas desulfurization.

These three systeéms remove the sulfur from the coal
prior to combustion, during combustion and after

combustion, respectively.

A residual fuel oil system (RFO) was included in
the analysis for the sake of completeness,
although the application of this type of system
will probably be decreasing in this time framne,
due to. the price and relative scarcity of oil.

(2) Nuclear Systems

a)
b)

c)

d)
(3) Solar

a)

b)

)
d)
e)
£)

The conventional light water reactor (LWR).*

The light water reactor with plutonium recycle

The liquid metal fast breeder reactor (LMFBR).
The high temperature gas cooled reactor (HTGR).
Central Power Plants

A "power tower" syctem (Central Receiver)

*
(2-axis sun tracking).

A parabolic dish collector system with three
forms of energy transport (steam, chemical and

electrical) (2-axis sun tracking).

A parabolic trough system (l-axis sun tracking).
A flat plate collector system (non-tracking).

A central photovoltaic system (non-tracking).

A satellite solar power system using photovoltaic

*
energy conversion.

Special emphasis has been given to a reference design for each

major category of central electric plant. The first plant listed above

*
Reference Design,
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under coal, nuclear and solar is chosen as the reference design, along
with the orbital SPS. The gasified coal, combined cycle plant is chosen
as a reference since it is based on existing component technology and
promises to reduce public health effects at the plant by 2 orders of mag-

nitude compared to uncontrolled current coal plants.

The light water reactor (LWR) was chosen as the nuclear
reference design. Although it is the only commercial design available
at present, it will be having a fuel (uranfum) depletion problem by the
year 2000. Even though there is uncertainty, the LWR has the advantage
of having the best data base on costs and possible health effects. The
Lk with Pu recycle may offer a small economic advantage but introduced
the difficulty of moving plutonium (Pu), a nuclear weapon material,
through society. The high temperature gas reactor (HTGR) is promising
and has several environmental and public health impact advantages over
the LWR. However, it has recently been discontinued from commercial

development. The breeder reactor (LMFBR) at present has uncertain cost

and environmental and public health impacts. The LWR is felt to be repre-

sentative of nuclear plant cost and hazards, and suitable as the repre-

sentative nuclear design.

The central receiver solar thermal plant is currentiy under
intensive development as the first generation solar central power plant.
Its cost and general characteristics are felt to be representative of
several approaches. The terrestrial photovoltaic power plant is also
selected as a reference design so there can be a direct comparison with
the SPS. 8oth these approaches are based on achieving the same low cost
goal for the photovoltaics, but the SPS assumes further developments to

reduce weight and increase efficiency of the photovoltaic modules.

Figure 2~1 gives an overview of the entire assassment pro-
gram. The conventional power plants, ground solar plants and orbital
plants are evaluated on the same basis. For each of the above systems,
the economics have been examined in terms of parameters such as capital
cost (in dollars per kW electrical rated power), and projected bus-bar
cost to the utilities (in mills/kWhr of electrical energy produced).
Needless to say, it is quite difficult to precisely estimate what these
economic parameters will be near the end of the century. Uncertainties

include: the projected performance of the power plants, their eventual
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commercial costs, and the differential rate of inflation among systems.
Plant costs are then comhined with transmission and distribution costs
to establish the total utility costs to the consumer for each central

plant as shown in Figure 2-1.

Each plant type requires RD&D support to reach commercial
prototype or to complete work to enhance the safety for minimizing publi:
impact. The Federal RD&D (Research, Development and Demonstration) funds

have been estimated for each approach.

The resource requirements were evaluated for each plant and
included material, land, water and manpower. In addition, health,
environmental and other impact areas weire identified for each approach.
In a sense, there is double-bookkeeping in this approach to total social
cost evaluation. The resources were economically accounted for in the
cost of the plant, and the social cost of health and other impacts are
also somewhat accounted for in future plant cost increases. Neverthe-
less, these areas are included as separate areas of concern which should

be considerad in a plant-to-plant éomparison.

The philosophy followed throughout the study was to attempt
to evaluate the complete energy cycle for these systems; this cycle is
broken down into seven steps. The cycle includes acquisition o»f mate-
rials necessary to build the plant, the construction of the plant, and
the complete fuel cycle required to operate and maintain the power
plants. The fuel cycle Includes extraction of fuel, processing, conver-
sion, transportation, power generation and waste management. This study
has employed existing knowledge found in the literature for the fuel
cycles of the fossil fuel and nuclear power plants. New data have been
developed for the material and equipment acquisition cycle, and for the

construction cycle of solar as well as fossil and nuclear power plants.

The scope of the work has been limited to central electric
energy systems since this initially is the most appropriate for compari-
son to the SPS and since the SPS is such a large (5000 MWe) and poten-
tially high load factor (= 0.9) plant. The ground solar plants studies
convert solar energy to electricity either by thermal or photovoltaic

vsonversion processes. Indirect forms of solar energy, such as wind power,

ozean thermal and ocean current power, biomass or geothermal, were not
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considered in order to limit scope so that sufficient attention could be
giver to terrestrial uses of direct solar energy. On-site, total energy
or coumunity sized solar plants were also not considered, in order to
limit scope. Total enz2rgy systems would generate electricity as well as
waste heat to meet a range of user energy needs. There is no inference
that these energy systems which were excluded, due to limited resources,
are not as favorable or even more favorable than the solar ssstems

considered.

Operation of the SPS at gecsynchronous orbit (23,000 miles)
was the only location considered. Low earth orbit (LEO) locat.ons with
microwave beaming to a geosynchronous orbit for microwave relay to earth

were not considered.

Only silicon photovoltaics were considered for both the orbi-
tal (SPS) and ground pbhotovoltaic plant. Solar thermal conversion and
nuclear energy conversion were not considered in this study for the orbi-

tal power system.

All materials used in the SPS are brought up from the earth

(the moon was not considered as a source for SPS materials).

This report is divided into roughly two pzrts._ The first
(Sections III, 1V and V) develop the projection of power plant utility
and delivered electricity costs by the year 2000 using both terrestrial
and orbital central power plants. The second half (Section VI) develops
information on other social costs such as federal RD&D, resource require—

ments, health impacts, enviro nmental and other impacts. '

No asttempt is made to indicate that there is an "answer" to
this study. Once socia. costs other than economic are intrcduced into
a study, there can be no single best choice for everyone. Each decision
maker in society must introduce their own set of values in reviewing this

material to determine which energy systens ore more (or less) desirable.

The spirit of this study follows along the lines suggested by
J. Coates of the congressional Office of Technology Arsessment: 'To be

"useful, therafore, a technology assessment must go far beyond conventional

enzineeiring and cost studies to look at what else may happen in achieving

an immediate goal, to che total range of social costs ..." (Ref. 1).
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SECTION III

ECONOMIC GROUND RLES

The comparison of utility cost to generate power at the bus-
bar (central plant) or at the consumer in the load center is ocue of the
primary methods used in this study to evaluzte alternative power plants.
There is a profusion of economic methodologies in use by the utilities,
government agencies and research groups studying energy. An attempt was
made at JPL, sponsored by the low cost photovoltaics project, to create
a methodology which combined several major forces in central power plant
economic methodologies. Reference 2 documents this approach and is the
result of collaboration of members from ERDA, EPRI, the Aerospace Corpora-
tion and the Jet Propulsion Laboratory. Preliminary versions of this
economic approach were used in the various analyses during this project,
but for this final report all calculations hsve been redone using the

complete and firal version.

The economic methodology considers capital, fuel, operation
and maintenance (0&M) costs, as well as taxes, insurances, profit and
multiple sources for raising capital. Tne methodology considers escala-
tion from 1975 (the year goods and services are priced) to the year of
plant startup in all cost areas (i.e., installed capital, O0&M and fuel).
Escalation of cos* 1is also considerad during the power plant's ovperational
lifetime, especi-.1ly for r.curring costs such as O&M and fuel. These
operational costs are collapsed to present values as of the year the
plant starts operating and levelized much in the way capital costs are
levelized. Such an approach more nearly represents the average cost of
energy over the life of the plaut rather than the firat year cost of
energy. This is especially apprcpriate when romparing different plants
that are capital intensive or are fuel cost intenslive. The rising costs

(in constant dollars) are considered over the plant life.

Several factors are used to go from direct costs to total
construction costs. The direct cost is for the manufacture of material
and ejuipment, shipping to the site and labor costs for constructiom.

To this is added an amount .or spares and contingency and indirect costs

for design, construction management and special construction facilities.
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The factcrs by which the direct costs must be increased are shown

below.

. Capital Cost Factors

One-of-a-~Kind Repetitive
Spares and Contingency 1.076 1.038
Indirect 1.20 (for 1000 MWe) 1.19

1.30 (for 100 Mwe)

The above factors are based on Reference 3; the factor for one-of-a-kind
is used for either conventional plants or conventional subsystems of a
solar plant. The repetitive factor is for those subsystems that are made
up of thousands of similar modules such as collectors, certain types of
storage, etc. Capital cost factors should be less for these repetitive
subsystems. The total construction cost is the sum of all the direct
costs augmented by the proper capital cost factor. For a 100 MWe plant
the cost is as fecllows:

m

n
TOTAL CONSTRUZTION = 1.076 x 1.3 E Ai + 1.038 x 1.1 E Bi + C
i=1 i=1

where

>
"

direct capital cost of one-of-a kind subsystem

-]
L}

direct capital cost of repetitive subsystems

construction interest

(o]
]

In simplified and approximate terms, the energy cost is given

by the expression

R

EC = 18,760

(hI + f10 + £.M + f3F) mills/kWehr

2
where

R = capital recovery factor which annualizes the initial
capital outlay

h = factor wulch includes taxes and insurance

3-2
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I = total construction capital cost, dollars
0 = annual operating cost, dollars/yr

M = annual maintenance cost, dellars/yr

F = annual fuel cost, dollars/yr

f = factor which creates a present value of the rising

cost stream due to inflation
P = plant rated power, MWe
L = annual average load factor (generated energy/8760 P)

Appendix A can be referred to for the development of these relationships

and their precise form.

In using this methodology, the year 2000 plant start-up time
is generally used; however, 1975 dollars are used throughout and differ-
ential escalation to the year 2000 is considered. The time frame near
the year 2000 is of interest for this study since this is the estimated
time when a small number of SPSs could be operating. The year 1975
plant start-up is also used for conventional plants so that the results
of this economic methodology may be compared to today's costs using

other approaches.

The specific assumptions used in the economic analysis are
shown in Table 3-1. The installed capital escalation rates are for a
plant without the presence of social resistance to its installation.
The quantities which are the most difficult to evaluate with confidence
are the escalation rates for installed capital for the coal, nuclear and
solar plants. These rates will be discussed in the following section as

each type of power plant is considered.
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Table 3-1. Economics Assumptions (Ref. 2)

Factor Value
System Cperating Lifetime, years 30
Annual "Other Taxzs'" as Fraction of 0.02

Capital Investment

Annual Insurance Premiums as Fraction 0.0025
of Capital Investment

£ffective Income Tax Rate 0.40
Ratio of Debt to Total Capitalization 0.50
Ratio of Common Stock to Total 0.40
Capitalization

Ratio of Preferred Stock to 0.10
Total Capitalization

Annual Rate of Return on Debt 0.08
Annual Rate of Return on Common 0.12
Stock

Annual Rate of Return on Preferred 0.08
Stock

Annual Growth Rates, % (Refs. 4,5)

1975-1985 After 1985

General Price Level 5.0 4.2
Labor (Construction) 7.0 6.2
Manufactured Goods 4.3 3.8
0&M (3/4 Labor, 1/4 Goods) 6.3 5.6
Other (Insurance, Taxes, 5.0 4.2
Profit, etc.)

Installed Capital 6.2 4.8
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SECTION 1V

POWER PLANT ECONOMICS

The power plant or bus-bar cost of energy has been
determined for the various power plants identified in Section II. Each
power plant has peculiarities that make it difficult to project the
utility costs to the end of the century. It is almost as difficult to
project the future costs of some existing commercial plants as it 1is to

estimate the mature commercial costs for prototype plants or conceptual

designs. This difficulty arises because the conventional plants identi-

fied as the most likely systems for use as central electric power plants
are based on coal and nuclear fuel, and both of these systems have i
experienced extraordinary cost increases over the past decade. The
underlying cause of this inflation seems to be as much a social phenomena
as economic. The uncertainty in predicting future costs is more due to
the uncertainties of projecting social resistance whether through govern-
ment bodies or legal processes instituted by citizens, than of under-
standing labor, material and technical issues (Ref. 6). Consequently,
all the estimates which have been made for power plant capital and energy

cost have uncertainty bands asso-’ ted with them.

4.1 CONVENTIONAL PLANT ECONOMICS

After reviewing many alternative fossil and nuclear fueled
central power plants, eight were identified as potentially feasible
systems to provide central electric power by the end of the century -
(Ref. 7). Three plants were based on coal; these were: 1) a coal
fueied steam Rankine plant with lime scrubbed flue gas desulfurization,

2) a coal fueled steam Rankine plant with fluidized-bed combustion, and

3) coal conversion to low BTU gas fueling a combined cycle gas turbine

and steam Rankine plant. These three technologies are estimated to

remove 90%, 95% and 99.7% of the sulfur in coal either after, during or
before coal combustion, respectively. The total construction cost (in '
1975 dollars) of a coal plant which comes on-line in the year 1975 is ;
estimated to be 450 $/kWe for the stack scrub, 335 $/kWe for the ‘
fluidized bed and 445 $/kWe for the low BTU gasification (Ref. 7). The
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overall conversion efficiency from coal to electricity with wet cooling
towers is estimated to be 37% for each approach (Ref. 7). The plant
efficiency of 37% is used but gas turbine technology improvements

(2200°F tc 3100°F turbine inlet) could increase the combined plant-coal
gasification efficiency to 46%.

The residual fuel oil (RFO) plant was considered but this
type of plant would be phased out toward the end of this century. Phase
out would occur due to 0il depletion and the greater social utility of

oil for transportation needs.

The coal gasification and combined cycle approach has been
chosen as being typical of coal based technologies which will be available
by the year 2000 and is used in subsequent comparison studies. It was
chosen because it haé the minimum public health impacts since it removes
almost all of the sulfur oxides (SOx) pollutant, and has a capital cost
within 35% of the least expensive approach. There is currently an
unknown amount of pollutants from the gasification stage which may have
occupational and possibly some public health effects. This is only one

of many uncertainties regarding these power plants.

The four nuclear based technologies selected were: 1) the
light-water reactor (LWR) using enriched (2-47% U-235) uranium oxide fuel
in metal cladding processad from sandstone ore. Pressurized or boiling
water is used to carry the heat from the reactor core, and a steam
Rankine plant (with 32% conversion efficiency) is used to generate
electricity. The spent fuel is reprocessed but only uranium is rzcycled;
2) an LWR with plutonium recycle which uses plutonium produced in the
uranium-fueled LWR to reduce the need for enriched uranium; 3) a liquid
metal fast breeder reactor (LMFBR) which converts U-238 to plutonium
and potentially can generate all its fuel from the more plentiful U-238
and be completely independent of U-235. Liquid metals are used tc carry
the heat from the reactor core to a steam Rankine plant where it 1is
couverted to electricity (with 39% conversion efficiency); and 4) a high
temperature gas cooled reactor (HTGR) which is an advanced converter
reactor which operates on the uranium~thorium fuel cycle (39% conversion

efficiency). A graphite matrix core is used with a carbide fuel form,
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and helium is used to carry the heat from che reactor core. Early
versions use a steam Rankine plant, while more advanced versions will

use the helium directly in a closed cycle Brayton engine.

0f these options, the one chosen as representative is the LWR
since it is the one with the best economic and environmental data base.
The LWR is estimated to cost 470 $/kWe total capital cost for a 1975
start-of-operation in 1975 dollars. There are regional differences in
nuclear and coal plant costs that could vary by #25%. The values quoted
are national averages. However, the LMFBR or some other breeder will
have to be developed if we are to use nuclear power without quickly
depleting the uranium resource (Ref. 8). LMFBR economic characteristics
are poorly understood and mature cost estimates vary from litile more than
the LWR system cost to 2000 $/kWe (Ref. 9). The Clinch River demonstra-
tion plant is estimated to cost at least 6000 $/kWe ($2 billion for a
350 MWe plant) (Ref. 9). The first full scale commercial IMFBR is
expected in the 1990s.

The HTGP. program has had a recent setback when the only
commercial supplier (Gulf Atomic) decided not to continue introducing
this new technology at the present time. Their decision appears to be
due to the economic risks that are involved. The Energy Research and
Development Administration (ERDA), however, has shown some interest ip

exploring possible underwriting of early HTGR plants.

The major uncertainty in the economic performance of a
nuclear and to a lesser extent, a coal plant, is the future projection -
of installed capital and fuel costs. The historical (1960 to present)
cost escalation for nuclear plants has been about 10% more than general
inflation (Ref. 6). Escalations in nuclear capital costs have been in
the 16 to 20% per year range since the early 60s while general inflation
has averaged 6 to 8% (Ref. 3). The nuclear industiy has cons.istently
underestimated the cost when ordering a new plant. Actual costs in con-
stant dollars after construction have been about three times greater
than estimated (Ref. 6). The reasons for these trends are varied
(Ref. 3); but the major causes apparently are not administrative or )

technical. The basis for the extraordinary cost increases appears to be
social or political in nature. In a broad sense, it represents the
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internalization of heretofore external social costs and appears to
represent a broad social resistance to nuclear and even coal central

power plants.

The specific nature of future requirements in coal or nuclear
plants that could cause continued differential inflation is not developed
in this study. Potential factors in differential inflation for nuclear
plants include the possible introduction of underground siting, the use
of nuclear parks, the requirements for dry cooling towers, expensive
deactivation of obsolete plants, more expensive insurance, redesigned
emergency core cooling systems, high waste disposal costs, etc. Coal
plants may be required to go to gasification or fluidized bed techniques
and the costs of achieving these advances may be greater than expected.
Additional pollution .controls may be necessary at the gasification step,
and coal waste products may have to be dealt with differently than in

the past.

Available techniques have erred substantially in the past
when attempting to predict current and future costs of nuclear and to a
lesser extent coal power plants (Refs. 3 and 6). Rather than predicting
specific events that would occur to nuclear and coal plants and estab-
lishing a causal relationship between these events and future cost
trends, a straightforward approach is taken to bound future costs. The
recent past (15 years) 1s used as a guide to the future. A lower and
upper bound of expected nuclear and coal plant capital costs is estab-
lished to extend past cost increases to the year 2000 in a certain
fashion. The upper bound of nuclear capital cost projection is based
on assuming the historic rate of 16 to 20% inflation (10% differential
inflation) and gradually reducing it to a lower value (nearly 1/2 g
original rate) by the end of the century (Ref. 7). The lower bound con-
sists of more quickly reducing the differential. inflation rate to a
socially neutral value by 1990. Socially neutral would rep. .ent no
social resistance and would have the numerical values shown on lable 3-1
in Section III. A mid (reierence) prediction of capital cost differen-
tial escalation lies between the upper and lower bound and goes from
historic rates to socially neutral rates by the year 2000. These data

are shown in Table 4-1.



Table 4-1. Plant Capital Cost Differential
Escalation Factors, z*

Type 1975-1980 1980-1985 1985-1990 1990-1995 1995-2000

Nuclear

Low 10 5.6 1.2 0.6 0.6

Mid 10 8 6 4 2

High 10 8.75 7.% 6.25 5.0
Coal

Low 4.25 2.4 0.6 0.6 0.6

Mid 4,25 3.3 2.4 1.5 0.6

High 8.5 6.8 6.5 3.4 1.7

General Price
Inflation 5 5 4,2 4.2 4.2

*
Fuel cost differential escalation “rom 1975 to 2000:
Coal: Low = 1%, Mid = 2%, High = 3%.

Nuclear: See text.

Note: Total inflation rate equals general price inflation plus
differential escalation.

A similar procedure is followed for the bounds of the capital
cost of coal plants. We project the use of an advanced and relatively
clean operating coal plant (gasification and combined cycle) that
eliminates more than 99% of the sulfur from coal and significantly
reduces public health effects. Since for such clean coal plants the
social resistance will abate more rapidly than would otherwise be
the case, we have assumed that the future coal capital costs would
decrease more rapidly than was the case with the LWR. Specifically,
the coal capital cost upper limit is considered to start at historic
rates of differential escalation (8.5%) and decrease to socially neutral
by the year 2000. The low bound is considered to go from one-half
historic rates to socially neutral by 1985. These rates are shown in
Table 4-1.
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The effects of this escalation on capital cost are chown
graphically in Figure 4-1. The costs for a 1975 plant start-of-operation
(less than 500 $/kWe) escalate to a range of 1400 to 2900 $/kWe for a
nuclear plant and 675 to 1650 $/kWe for a coal plant for operation by the
year 2000 in 1975 dollars. This projection of future costs, due in part
to continued internalization of external costs, is in a sense a double
accounting of factors that will be considered later in Section VI, The
factors to be considered in Section VI deal with resource consumption,
energy breakeven, health effects, environmental impacts and other social
costs. All these considerations will in some manner contribute to con-
tinued cost increases. However, the projection of capital and fuel costs
to the time frame of interest is felt to be valuable, as is the evalua-
tion of resource, health, environmental and other impacts of these energy

systems.,

The fuel costs for coal and uranium ore have undergone rapid
increases in recent years. For example, the average coal price to the
utility industry doubled from 1973 to 1974. Fuel prices will most
certainly continue to escalate due to a combination of union wage
demands, increasing attempts to protect the environment, occupational
health and the rising cost of alternate fuels such as o0il and gas. The
long-term differential escalatic. rate for coal is estimated to be 27
(Ref. 10) while 3% is considered the long-term upper limit (Ref. 7); the
lower limit to the escalation of fuel for a coal plant is considered to
be 1%. The 2% escalation rate will cause a 647 increase in the average
utility industry cost of coal by the year 2000 from the 1975 cost of
$0.89/MBTU (23 $/ton).

The nuclear fuel cost is made up of five parts as outlined
in Reference 7: uranium ore (U308)’ uranium floride (UF6) conversion,
0235 enrichment, fuel fabrication and reprocessing wastes. In 1975
dollars, the U308

core installation to 45 $/1b over the last 20 years of the 30 year plant

cost is considered to go from 13 $/1b for the initial

life. The cost of the other components of the LWR fuel are considered
to cost as follows averaged over the plant lifetime: UF6 conversion at
330 $/kg, enrichment 75 $/SWU (seperative work unit), fabrication at

70 $/kg, and reprocessing wastes at 120 $/kg. The costs are prorated
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Figure 4-1. Projections of Conventional Plant Capital Cost

per kg of uranium. To be able to evaluate these nuclear fuel costs at
future plant start-up dates, a differential escalation factor of 2.2% is
used. Thus, a year 2000 start-up would increase the above costs by a
factor of 1.72, Fuel reprocessing and the final disposition of nuclear
wastes are areas of the LWR fuel cycle that are still in flux; the final
outcome will affect both direct and social costs of the nuclear energy

cycle.

The historic yearly load factors for baseload nuclear and
coal plants have been 0.55 to 0.62 in the recent past (Ref. 7). Load
factor is defined as the actual generated energy divided by rated energy
generation capacity. This 18 well below the values used in most costing
studies. For this study, the historic load féctors have been taken as
lower bounds. Improvements in performance are anticipated that should

raise the load factor to 0.70 for nuclear plants and 0.74 for coal plants
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by the year 2000. Factors which would improve the load factor might
include maturing of LWR designs including standardization, and a relaxa-
tion of present procedures which close all plants of a given design
when a problem is found in one plant. For coal plants, the debugging of
pollution control equipment would contribute to higher load factors. An

upper bound is considered to be about 0.8.

Using the economic methodology and assumptions discussed in
Section 1II, the bus-bar (power plant) energy cost for a LWR nuclear
plant has been developed and is shown in Figure 4-2 as a function of
load factor. The effect of the upper and lower bound on capital cost
escalation rate is shown as well as the assumed year of online operaticn.
The energy cost for 1975 start-up at a 0.7 load factor is 24 mills/kWeh
while for year 2000 start-up (the reference point), the cost is
76 mills/kWhr. Thrse costs represent today's cost for energy annualized
over the 30 year life of the plant.

e LWR (LIGHT WATER REACTOR)
¢ WET COOLING TOWERS

0T CAPITAL
ESCALATION RATE:
_ 2°  UPPER BOUND[PN
r= N
£ 100 N _~REFERENCE POINT
s TS
Z 8o ™
e LOWER BOUND~_ f\ PLANT STARTUP
g 60} ~~{_ YEAR 2000
> S
% a0}
4
YEAR 1975

1 | |
N S X B -
LOAD FACTOR

Figure 4-2.- Nuclear Plant Economics
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Figure 4-3 shows the costs for a low BTU coal gasification
power plant at 27 differential coal escalation. The year 2000 start-up
energy cost is 58 mills/kWeh at the reference point and 31 mills/kWeh for
the 1975 start-up. However, if current technology coal plants are con-
sidered with similar differential escalation to current nuclear plants
and 3% differential coal escalation, the year 2000 start coal plant is about
84 mills/kWeh.

® LOW Btu GASIFICATION
© COMBINED GAS AND

STEAM TURBINES
@ WET COOLING TOWERS
140
120}

£
$ 100 CAPITAL
= ESCALATION RATE: REFERENCE
z 80F UPPER BOUND
—
8 o} | PLANT START-UP
; LOWER BOUND r———ad ] ‘YEAR 2000

40}
E — YEAR 1975

20}

0 A | 1 1
0 4 0.5 0.6 0.7 0.8 0.9
LOAD FACTOR
Figure 4-3. Coal Plant Economics
4,2 GROUND SOLAR PLANT ECONOMICS
4.2,1 Introduction

Solar thermal power plants are undergoing limited prototype
development by ERDA, and one version of a central receiver 10 MWe pilot
plant is expected to be operational in 1980 at Barstow, California. The
first version of a full scale commercial feasibility demonstration plant
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is expected by 1985 and will be rated at 100 MWe. This type of plant
uses direct solar energy which is reflected from a field of mirrors and
trapped as heat in a central recelver. The heat 1is used verv much like
the heat in a fossil boiler or in a reactor core; i.e., it produces
steam that is expanded through a turbine, which in tura runs a generator
to produce electrical power. The src.ific approazh being pursued by
ERDA uses an array of flsi or almost flat mizrors (heliostats) and a
central ieceliver at the top of a rather tall (100 to 600 m} tower. Thus,
optical collection is used tc briug tlie solar energy to the central
receiver. Steam is generated by the collected heat and then transported
to the steam power plant at the base of the tower. Of all the different
approaches to direct solar thermal electric power plants, this approach

ic most similar to current central power plants.

A second type of ground solar electric power plant considered
in this report uses photovoltaics as the energy conversion device rather
than a heat engine, The current Low Cost Silicon Solar Array program
sponsored by ERDA may make a wide range of power plants economically
feasible.

The JPL study reviewed the above two approaches (Refs. 11,
12 and 13), and also considered several others using thermal conversion
to electricity without optical transfer of the sunlight to a central
receiver. These studies were based on various types of solar collectors;
i.e., ordinary (Ref. 14) and advanced (Ref. 13) flat plate collectors,
linear (trough) concentrators using either a continuous parabolic surface
or strip mirrors to reflect the energy and concentrate it along a line
(Ref. 15), and distributed point concentrators based on a parabolic dish
reflecting surface (Refs. 16 and 17). Twn major choices exist for
collecting and converting thermal energy to electricity with a power
plant using parabolic dishes. These choices are (1) the heat can be
moved to a central energy conversion plant via a transport fluid or with
disassociated chemicals pumped through a piping network, or (2) the heat
collected can be converted to electricity in a small heat engine-
generator directly coupled to the dish and the electricity produced
carried to a central point via wires. Thus, the distributed collectors/
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receivers can have either distributed energy conversion (sma’’ heat

engines at each dish) or central energy conversion (large heat engine).

The decision to implement a central receiver type of solar
thermal power plant was made by the government in late 1974 after com-
pletion of initial paper studies performed for Tie National Science
Foundation (NSF) by several study groups (Ref. 18,. The apparent cost
advantage of tne central receiver concept over the nearest alternative
desigr approaches, such as the parabolic trough or dish, rangcl from

20% to 50%, depending upon the group performing the study.

Results of similar studies at JPL aie shown in Table 4-2, which
combines the results of References 11, 12, 14, 15, and 16. These results
are based on a simplified performance and economic model. There is no stor-
age; 1t assumes 100% generating efficiency; it does not allow for dirt
fouling of reflecting surfaces; and it does not consider operation and
maintenance costs. Oniy direct capital costs (assuming overnight construc-

tion) are considered; wet cooling towers are assumed.

In general, this simplified analysis will underestimate costs,
but is useful for a first order relative perfori arce comparison. This
comparison supported the NSF finding that the central receiver is the
least expensive at $900/kWe direct capital ~cst ad 40 mills/kWzh
energy when a capi:tal recovery factor of (.15 was used. The ne.rest
competitor was a parabolic dish collector; it was -~iL least 25% more

expensive.

4.2.2 Performance

Based on the above preliminary results, the non-tracking and
single axis tracking linear concentrator concepts were dropped by JPL
from further consideration for central power plants. Further JPL
evaluation effort was limited to the following power plants which

appeared to be the most competitive from the initial survey.
(1) Central Receiver

° Thermal storage

4-11
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Table 4-~2. Results of Early JPL Studies of Central
Electric Solar Power Plants

Direct(l) (2)
Energy
Collector Energy Energy Capital
Type Transport Conversion Cost, nigi:ELWh
$/kW ' ‘
Flat Optical Lacge Central 900 40
Heliostat Steam Plant
Parabolic Steam Large Central 1150 50
Dish Steam Plant
Chemicals Large Central 1150 50
Steam Plant
Zlectricity Small Engine 1450 65
on Dish (3)
Parabolic Superheated Large Central 1750 78
Trough Steam Steam Plant
Non-tracking Saturated Large Central 1450 90
Vee-Trough Steam Organic
Flat Plate Rankine Plant
Conventional Water Large Central 2500 150
Flat Plate Organic
Rankine Plant
Silicon (4) Electricity Photovoltaic 1250 76
Photovoltaic
(No Concentra-
tion)
(1) Direct costs only with overnight construction, no O&M, nc

(<)

(3)

(4)

storage, wet cooling towers, no dirt fouling of mirrored
collector surface and 100% electric generating efficiency.

Energy Cost +G.15 ($/kW)/8.76 L where L = 0.383 for tracking
systems and L = 0,280 for non-tracking.

Expensive ($400/kW) small Brayton engines considered in this

analysis.

The $o.50/wp goal assumed at 10% average module efficiency.
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(2) Parabolic Dish Collector

° Chemical transport and underground chemical
storage
~ Small Stirling engine with electric transport

and battery storage or pumped hydro storage
(3) Photovoltaic Conversion with Electric Transport

® Battery storage or pumped hydro storage

As can be seen above, two or more competitive storage options

were also selected for each of the three basic concepts. The competi-
tiveness of the various storage options was based on results of studies
reported in References 19, 20 and 21. Detailed performance character-
istics of the above power plant options were next determined. Unlike
the early survey studies, the more detailed analysis included energy
storage and its assoclated inefficiencies as well as many factors not
included in the preliminary analysis for the "sun followirg" plants.

One of these factors is the use of dry cooling towers with limited heat
rejection on hot days. There is also consideration of auxiliary power
for collector aiming and cooling fans, and the introduction of the
inefficiency of the electrical generator. A more realistic turbine
efficiency was used, and the effects of off-load turbine inefficiency
was considered along with the effect of ambient temperature on turbine
performance. The solar plant performance methodology developed for ERDA
by the Aerospace Corporation was used with a number of modifications as
described in Reference 22. This performance methodology is an hour-by-
hour calculation that uses weather data, projected user demand and which
simulates the plant performance using a specific plant dispatch strategy
in a simulation of an entire utility grid. Such a degree of complexity
is needed so that ma;or questions of solar plant reliability may be

addressed as well as predicting plant energy and ccst performance., Extra
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——

pa—

4-13



B T i

AR TVIN S

Nopvan -

P

/

margin (backup capacity) is required when a solar plant replaces a
conventional plant since a solar plant is subject to the vagaries of
weather. The Aerospace Corporation margin analysis developed for ERDA
was used for this purpose (Ref. 23).
4.2.3 Solar Plant Utilization in a Utility Grid

A utility grid uses a variety of complementary power plants §
that range from baseload plants, through intermediate to peaking plants. ;

3 e

The baseload plants are the cheapest to operate and have load factors
greater than 0.4 (Ref. 24). They are usually the newer coal plants and
nuclear plants when available. These plants are capital intensive and %
have relatively low fuel costs. The intermediate plants are operated

at intermediate load factors (0.2 to 0.4), and are usually made up‘of
older fossil plants. The peaking plants are operated at low load f;ctor
(<0.2), and usually are gas turbines with low capital cost and high fuel
costs. Because of their high operating costs they are Lrought on line
only to meet limited peak power demands. A minimum generating cost
dispatch strategy is used by the utility to meet the varying daily,
weekly and seasonal demand load, while providing adequate spinning

reserves.

Note that the definition of what constitutes a baseload
plant is a plant that has the lowest operating cost and is run as often
as possible due to these operation savings (Ref. 25). With the exception
of off-season hydroelectric, any plant now in use can operate 24 hours a
day for days or weeks barring maintenance problems. Thus, the ability
to operate 24 hours a day does not define & baseload plant since peaking
and intermediate plants have this same capability. Rather, annual load
factor is used by the utilities to categorize a plant as baseload,

intermediate or peaking. '

This study will limit itself to baseload Jsower plants
hecause of the need to compare alternative plants .o an orbital SPS
system which can only be a baseload plant. Thus, this report is basi-

cally a direct comparison of various alterrative baseload plants.
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Historical data on coal and nuclear baseload plants (Ref. 7)
indicates that the load factor averaged over the year has been in the
0.55 to 0.62 range. Load factor (L) is defined as the annual energy
generated (kWhr), divided by rated power (kW) times 8760 hours*. It is
anticipated in this study that the annual load factor of a nuclear and
coal plant will improve to 0.70 and 0.74, respectively, by the year 2000.
Therefore, a baseload central electric solar power plant is assumed to
have an annual-averaged load factor (LS) of 0.70 including scheduled and
unscheduled maintenance factors of 0.90 and 0.96, respectively. Thus,

the designed annual capacity factor of a solar plant is 0.81.

The capacity factor (Lc) is the load factor divided by the
maintenance factor. It is the fraction of the year the plant could
deliver power from direct and stored solar energy. A solar plant with
such a large capacity factor would certainly not be recommended (or be
needed) for the initial commercial solar plant demonstration. However,
no strategy has been developed in this study for choosing the size
(annual load factor) of solar plants as solar penetration increases in a
utility grid. Obviously, a strategy could be developed, and would cer-
tainly involve a mix of solar plant designs that could have an annual

load factor of 0.3 to 0.7 as penetration increases.

A grourd solar plant would operate somewhat differently than
a conventional plant. Depending on the design, it will be down for a
few hours a day or operate at partial power over part of the day.
Occasionally it will be down for one or more days due to adverse weather.
This reduces the reliability of a stand-alone solar plant compared to a
conventional plant operating at the same annual load factor. Because of
this, it is necessary to install extra margin (backup) capacity and use
some forr of backup energy to increase the reliability to that of a
conventional plant. A valid economic comparison should include these
extra margin requirements for a solar plant. The initial analysis given
in this section is for the solar plant. In the last part of this section,
the extra backup requirements are evaluated and are added to the earlier

results.

*
Number of hours per year.
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The same analysis should be done for the SPS since it also
has outages which occur due to eclipse by the earth, and blockage by
an adjacent SPS. However, this has not been done for the SPS in this

report.

The approach which has been taken is felt to be conservative;
i.e., over estimates solar plant costs. Instead of the approach taken
in this study, which is to insert only a baseload (L = 0.7) solar plants
into the grid and then calculate extra margin requirements to meet
grid reliability, the following approach is considered more reasonable.
Solar plants with a8 range of design annual load factors (Ls) should be
considered with storage capacity varying from 0 to 15 hours. A single
design point solar plant as well as a mix of solar plant designs should
be introduced into the grid. The other plants in the grid (peaking,
intermediate and baseload) should be adjusted; i.e., remove some and
add some, to give minimum cost for the entire grid at the same total
grid reliability. Then it can te determined what load factor solar
plant or mix of load factors is best, as well as the capacity of plants
the solar plant replaced. How much energy was replaced would then be

known.

This type of analysis would be sensitive to the specific
utility being considered, the projectior of future demand, the relative
economics and reliability of the various types of plants as well as
weather and solar plant performance and costs. Early analysis tends to
indicate that solar plants’will replace a mixture of intermediate and

baseload plants with this type of approach (Ref. 26).

4.2.4 Solar Plant Costs

Typical performance results are shown in Figure 4-4 for a
steam cycle central receiver solar plant based on a design most similar
to that proposed by the Honeywell Corporation (Ref. 12). The annual
plant capacity factor 18 shown as a function of the two major solar
plant design variables: The mirrored (heliostat) area and the size of
energy storage in nours of operation at 70% rated power. In general,

as the aiea and storage are increased, the capacity factor becomes

4-16



B

£ A b s

SVuUBWIOFIRd JUBTJ IBTOS 19ATII3Y TEIIUA) - 2In3Tg

*IDNVNIINIVW
304 3WLL NMOQ ON S! 3¥3HL J1 ATSONNILNOD ¥3MOd 031V 1V NOILV¥3dO Ol
Q3¥V4WOD Q3LVIINISO 38 GINOM LVHL AD¥INI TVANNY JO NOILOVYS FHL S1°7

wy ‘YYy Lv1SO!T3H

4
0°¢ S'1 0’7 S0 .
| T ] ¢ 0
3 —Hv0
m
=
S wv >
® 3 o
-~ ] | 22
s ¢ 90 3
ey} -n
mm >
o
quv g —H¢20 9
e
2 2
= - w.O aJﬂln.
-..M 6
W —6°0
el
81
o't

dIMOd G3LVY aMW 00T e

S e s s et e & e re 5 an bn A e e seshark S

e ¢ s A+ D DU 1+ TR T 0% A BN e

4-17




larger. The annual load factor is the plant capacity factor adjusted for
scheduled (0.90) and unscheduled (0.96) maintenance. A reasonable design
for a 100 MWe rated plant that achileves an annual capacity factor of

0.81 (0.70 load factor) would have about 1.30 km2 of heliostat area and
12 hours of storage capacity at 707 rated power. This performance is
also possible with a 2 km2 area and about 8 hours storage. The selection
of the optimum design is based primarily on economics and is developed

below.

For each of the power plants selected for further evaluation,
the energy cost, capital cost and extra margin requirements were developed.
To do this it was necessary to establish reference costs for eaci major
subsystem. Using the data from earlier JPL survey studies (Refs. 12, 13,
16, 17, and 19 through 21), projections were made of mature commercial
costs in each area. '"Mature costs" is taken to mean that mass produc-
tion is assumed where applicable. Our best judgment of what the expected
costs are for each major subsystem is shown in Table 4-3 in the "mid"
column. The low and high limits of expected costs are also shown; the
"low" is intended as a cost at the lower limit of probable cost with low
probability of attainment, while the "hi" is a cost that is at the upper
limit of probable cost and could be achieved with high confidence. The
only exception to this is for the photovoltaic plant where the cost
estimates ("mid" column) correspond to the achievement of the ERDA cost
goal (Low-Cost Silicon Piotovoltaic Program) of $0.50/W_ at the expected
nominal efficiency of 13% at 28°C in AM (air mass) 1. zand costs are
assumed to be $1000/acre and thus are negligible.

The resulting energy cost for each approach (using the "mid"
costs for each subsystem) is shown in Figure 4-5 as a function of the
annual design solar load factor (Ls) including a factor of 0.864 for
scheduled and unscheduled maintenance. Ls is the performance based only
on solar equipment. The economics of the reference design are based on
a year 2000 plant startup. For a 1975 plant startup, these results
should be multiplied by 0.82. The energy cost due to operation and
maintenance expenses is obtained by adjusting the first year costs by
the first equation in Appendix A to levelize the 0&M costs. Thus, this
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includes the effect of inflatirng recurring costs over the 30 year life
of the plant. For the particular values used from Table 3-1, the net
effect is to triple the O&M =2nergy cost that would result from the data
given in Table 4-3.

The collector area and amount of storage have been optimized
for minimum energy cost at each load factor. For example, for the
central receiver the optimum designs (minimum energy cost for the solar
plant) are shown below for a 100 MWe rated plant operating at Inyokern,
California with dryv cooling towers.

Annual Solar Heliostat Storage Capacity
Load Factor, is M at 70% Rating = Hf_s_
0.295 0.5 0
0.560 ' 1.0 7.5
0.70 1.3 12
0.753 1.5 12
0.820 2.0 15

On an annual average, there are 10.8 hours of sunlight per day

(8.75 kWhrs/m2 per day) at a good Southwest location. As can be seen

in Figure 4-5, there is a bowl shaped curve of energy cost for the plant
with thermal (internal) storage. A minimum energy cost is reached at a
load factor between 0.35 and 0.65 where there is a balance between: (1)
the energy cost of fixed equipment such as the turbine which decreases
with increasing load factor, and (2) the cost of storage capacity which
increases with higher load factor and also lowers the energy availability

and thus lowers the average plant efficiency.

The plant with underground chemical storage levels off in
energy cost at high factors since the cost of storage is so inexpensive.
Actually, many days of storage could be accommodated and extra non-solar

margin (backup) from the grid would not be required.
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The plauts with external storage (i.e., storage after
conversion to electricity), such as the dish-stirling and photovoltaic
plant, have an energy conversion device that is designed for peak isola-
tion. Thus, there !5 no fixed equipment for which the contribution to
energy cost can be reduced as load factor increases. The cost increases
with load factor (as shown in Figure 4-5) simply because increasingly
more energy is rut through storage. This reduces the average efficiency
of the plant and thus energy cost always incrcases with increased load
factor. It should also be noced that the external storage plants ace
assumed to cell all electricity generated at rated power. When power is !
produced at levels greater than the plant rated power the energy is sold
at half price. This assumes that energy generated when the power level
is greater than rated will only be of value as a fuel saver, not as a 2

canacity displacement as well.

The photovoltaic plant is based on a nor-tracking silicon photo-
voltaic design naving an asymmetric vee-trough concentrator that is reversed
twice a year (Ref. 13). Concentration ratio (CR) of 2:1 is used, and the
cost of maintenance, surface cleaning and reflector rotation in included.
The cost for the dish-stirling combination includes maintenance and
replacement of the stirling engine every 5 years (Ref. 17). For both
systems, an advanced redox battery is used with a 2 mill/kWehr mainten-
ance cost and 20 year life time (Ref. 19). It should be noted that due
to these maintenance costs and the use of levelized recurring (operation
and maintenance) costs, only 2/3 of the dish-Stirling system energy cost
is due to capital. The remaining 1/3 is due to 0&M and amounts to
nearly 30 mills/kWehr.

Based on these studies, the dish-Stirling engine design, the
central receiver, and the dish-chemical approach are all equally attrac-
tive from an economic standpoint. The energy cost is estimated to be
from 90 to 100 mills/kWeh at an annual average load factor of 0.70 and
year 2000 start-up for all three approaches. However, this estimate i
assumes that the energy cunversion engine (Stirling engine) and chemical
system are developed commercially, while the central receiver approach

uses the existing central erergy conversion technology of the steam
Rankine plant. ;
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With the $0.50/Wp goal, the photovoltaic plant is 25% to 60%
more expensive than the solar thermal plants as the solar load factor
goes from 0.3 to 0.70. Lower cost goals may be necessary before the
photovoltaic plant is competitive with other ground solar approaches for

central electric power.

The total installed capital cost for a year 2000 planc start-
up in 1975 dollars is shown in Figure 4-6 as a function of annual average
solar load factor for each of the four power plant types. The area and
storage capacity increase anc the lower thermodynamic availability of the
stored energy becomes significant with increasing load facivr. This causes
the capital cost and to a lessor extent, the energy cost to rise. This
characteristic of a solar plant is generically different from conven-
tional (fossil or nuclear) plants. A conventional plant has a capital
cost that is more or less fixed and only slightly sensitive to the rated
power and indifferent to how much the plant is operated per ear (annual
load factor). [he capital cost of a solar plant, on the other hr—i, is
very sensitive to the designed annual average load factor as shown in
Figure 4-6.

The results shown have used the expected r ibsystem costs
("mid"). The only exception is the use of the 1985 ERT'A goal (0.50 $/Wp)
for the photivoltaic performance. To show the probable limits of costs,
iower and higher boundaries have been established. These are considered
to be the combination of all the "low'" and of all the "hi" subsystem
costs as were shown in Table 4-3. It 1s unlikely that the cost will be
below the lower limit, and unlikely the costs will be above the upper
limit when commercially mature. This bounding of costs is shown in Fig-
ure 4-7 foi two baseload solar electric plants: the central receiver solar

thermal plant, and the silicon photovoltaic plant.

4.2.5 Hybrid Solar Plant Costs

The analysis summarized by Figures 4-5 through 4-7 present
projections of solar central power plants by themselvea. The analysis
ignores the unreliabilities of sunlight availability and the need for
backup capacity to maintain grid reliability. The results represent
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annual average rcrtermance; hour by hour simulation was used to
determine output power and the status of stored energy. It is possible,
however, even in a Scuthwest location <uch as Burbank, California, to
have nine consecutive days of cloudiness in a particular 4 year period.
To build a solar plant to have nine days of thermal storage is prohibi-
tively expensive (=390 mills/kWehr) except for approaches which use
undergrounc gas storage. Underground gas storage costs are potentially
so reasonable that many days of storage are possible at a slight cost

premium (less than 10%).

All power plants occasionallv become unavailable due to
scheduled or unscheduled maintenance. It is not the current practice
of utilities to have enough storage capacity set aside to cover nuclear
plant core refueling or turbine overhaul, etc. What is done is that
extra capacity or margin is installed in the utility grid above and
beyond peak demand to cover outages. For the operation f ground solar
plants, a similar procedure is suggested. That is, it is suggested that
additional capacity (extra margin) be installed to maintain grid perform-

ance when there are weather related outages of a solar plant.

Using the Aerospace margin analysis code developed for use
in mission analysis for ERDA, the extra margin needed to backup solar
plants was determined. Extra margin (Pm) is the installed non-solar
capacity needed for a utility grid with solar plants that is greater
than the installed capacity needed for a utility grid without solar
plants.

where P1 is total installed capacity for a utility grid with conventional

and solar plants and P, is total installed capacity for a utility grid

2
with only conventional plants

= +
P2 Ppeak M
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where Ppeak is the annual peak demand and M is the margin needed to have

acceptable grid reliability using only conventional plants

= +
Thus Py Ppeak +M+ P

To understand the magnitude of this effect, the ratio of Pm
to the rated installed solar capacity Pr is evaluated as a function of
several parameters. The parameters of greatest interest are the designed
annual load factor of a solar plant (Ls), and the amount of penetration
of solar capacity into the grid. The ratio Pm/Pr indicates how many
megawatts(e) of extra non-solar capacity should be installed for each

megawatt(e) of solar capacity.

For baseload solar plants, the plants are continuously asked
to produce energy at the rated power. Since the solar plant does not
always meet this expectation, due to weather or being undersized, extra
margin must be provided to maintain grid reliability. The amount of
extra margin installed capacity (Pm) which should te added for each unit
of rated baseload solar capacity (Pr) is shown in Figure 4-8a along with
the extra energy needed (Em) from a non-sclar source for an Inyokern site
with Southern California Edison demand. The data is shown versus the
normalized annual load factor and assumes 20% penetration of baseload
solar power into the total grid. The normalized load factor is the
design solar load factor (Ls) divided by the expected conventional base-
load plant load factor (LB)' As the normalized load factor appreaches
1.0, the stand-alone solar plant requires less extra margin and less
backup energy. At unity, the needed extra margin (capacity) is 20% of
the rated power of the solar plant, and the backup energy is essentially
zero. Therefore, for every 1000 MWe of solar capacity, 200 MWe of extra
margin must be added tc the grid. Also shnwn in Figure 4-8a is data
from analysis by Southern California Edison for 5, 10 and 20% solar
penetration. These results compare well to the analysis performed

using the Aerospace marzin analysis computer code.

Figure 4-8a is plotted versus normalized load factor since
there is disagreement as to what load factor constitutes a baseload

plant. Values betweer 0.40 and 0.R64 can be suggested as baseload-load
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Figure 4-8. Central Receiver Extra Non-Solar Margin
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factors. The actual analysis was performed with the designated conven-
tional plant load factor (LB) equal to 0.864. Figure 4-8a should be

used only for baseload plants and is felt to be accurate for LB > 0.5.

Figure 4-8b shows how the extra margin (Pm) increases with
solar baseload penetration based on LB equal to 0.864. The use of
multiple sites for solar plants having different weather would reduce
the backup margin requirements. Thus, the results shown in Figure 4-8
are conservative since as solar penetration increases, multiple sites

would certainly be used.

This extra margin can be obtained in at least two distinct
ways. Power plants can be added throughout the utility grid, and some
combination of plants can be operated at lower capacity factors to
provide this extra margin. A second approach is to add the capacity at
the solar plant site itself. Such a solar plant would then be called a
hybrid plant. In either case, the extra margin and non-solar energy
consumption must be considered in the cost and performance of a solar
plant for a proper comparison to power plants that do not depend on “he

vagaries of weather,

To estimate the cost of the extra margin (back-up capacity)
and energy, it is assumed that coal is the source of the energy. As
with the reference coal plant discussed earlier, the coal can be gasified
to low BTU gas in a gasification plant located in the same region as
several solar plants. Using gas pipelines, this low BTU gas can be
supplied to inexpensive, once-through auxiliary boilers (coupled to the
solar power conversion equipment) to produce high grade steam (such units
are being sold commercially to the utility industry by the Rocketdyne
Corp. based on rocket nozzle cooling technology). The existing steam
Rankine conversion equipment at the solar plant can be used to generate
electricity. The cost of this back-up system (i.e., gasification plant,
gas pipelines and auxiliary boiler) has been estimated to be 270 $/kWe
in 1975 dollars for a 1975 plant start-up (Ref. 7). The coal to be
supplied to the gasification plant was assumed to cost $0.89/MBTU
($23/ton) in 1975 dollars. The same capital and fuel cost escalation
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factors shown earlier for the reference coal plant (Section 4.1) were
used to escalate the cost of back-up equipment and fuel to project year

2000 plant start-up costs.

A comparison of the cost characteristics of the hybrid power
plant having LB = 0.864 with the solar plant alone is shown in Figure 4-3
where costs are shown versus solar load factor, LS. As expected, the
capital costs ($/kWe) of the hybrid are greater because of the additional
costs of capital for the extra margin. However, the energy costs ($/kWhr)
are actually lower for the hybrid plants. The reason for this is that
the added energy capability produced by the back-up system is less expen-

sive than the energy produced from solar,

This aprroach can be used for all solar baseload plants, but
the technique of providing the back-up margin may differ. For example,
the dish-Stirling sclar plant might use the Stirling engine-generator
itself as the back-up capacity. Besides adding the low BTU coal gasifi-
cation plant, the cavity receiver may have to be designed to double as a
combustion chamber. The photovoltaic plant will have to have its own
gas-turbine or fuel cell generating capacity. Again, the low BTU gas

from coal may be the energy form used to drive these electric generators.

The costs shown in Figure 4-9 are felt to be representative
of the cost of capacity and energy for this extra margin. At a solar
plant load factor of 0.7, the installed capital cost increases by 8%,

while the energy cost decreases by 7% when extra margin is included.

Another source of conservatism for the minimum cost plants
with external storage such as the dish-Stirling-battery and the
photovoltaic-battery is that these plants can have a peak capacity that
is much greater than the rated capacity. For example, the dish-Stirling
plant with a solar load factor of 0.7 has a peak capacity of over 300 MWe.
The storage svstem was sized at over 200 MWe to handle maximum generating
capacity greater than the rated capacity. It is possible for this plant
to generate over 500 MWe near the midday and over 200 MWe after dark
for a short period of time. This is extraordinary for a plant rated at

100 MWe. Such capability for plants with external storage should reduce
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extra margin requirements and possibly even elimiuate its need. Also

the back-up fossil source can be used to drive the plant at over 300 MWe
whenever the sun is not available and the grid requires this capacity.
This added capability may even give this plant a negative extra margin
requirement at a capital cost savings. These effects should be evaluated

for external storage plants to more accurately determine margin needs.

4.3 SPS PLANT ECONOMICS

The Satellite Power System (SPS) considered in this compara-
tive assessment is based on photovoltaic energy conversion. It is a
very large satellite. For the assumptions made in this study, the satel-
lite weighs about 100 x 106 kg in geosynchronous orbit for 5 GWe
delivered on the ground. About 50 kmZ of photovoltaic blankets are
required for 5 GWe of electrical power delivered to the electric utility
grid. This system collects snlar energy, concentrates it slightly (2:1)
onto thin photovoltaics, collects the resulting dc electricity at voltages
of about 20 kV and carries it across a rotating joint to a transmitter
where the dc is converted to microwave energy. The coherent microwave
beam is transmitted 37,000 km to a fixed microwave receiver on the
ground in a regional power grid. The microwave energy is converted back
to dc, collected and then changed to ac for transmission to the load
center using conventional transmission techniques. The SPS power system
includes the space power plant, the ground receiving antennas (rectennas)
and the dc to ac conversion equipment as well as the orbital support
facilities, orbital constructicn facilities, transport systems from
ground to geosynchronous orbit (GSO), ground launch facilities and
related ground support facilities.

SPS operation at geosynchronous orbit is considered. Loca-
ting the SPS at a lower orbit with microwave beaming to a synchronous
orbit relay station is not considered. Only silicon photovoltaics is
used as the energy conversion technique. Other types of photovoltaics,
golar thermal or nuclear energy conversion are not considered. All
materials are brought up from the earth. The moon is not used as a

source of materials for the SPS in this study.
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A post-shuttle transportation subsystem must be developed
(a heavy 1ift launch vehicle, HLLV) to bring the materials to low earth
orbit (LEO). The form of most cf the material is bar stock and sheet
metal rolls, rather than finished subassemblies, and nearly automated
factories must be created to complete the fabrication in either LEO or
GSO. Man must develop the capability to be as productive in space as on
an automated automobile assembly line in terms of kg of finished products
per man-hour worked in order for the SPS costs to be competitive
(Ref. 28). LEO to geosynchronous earth orbit (GSO) transport systems
must be developed for the satellite (chemical or ion propulsion) and
for support personnel (chemical)., Maintenance, resupply, station keeping
and attitude control, and operational procedures must be developed for
LEO and GSO operation. Worker habitats and tele-operators must also be
developed. Lightweight structures of enormous area for a single power
plant, distributed active control systems and a number of other major

subsystems must be developed for a commercial SPS.

Each SPS could be about 5 GW rated capacity and have a
ground receiving antenna of 11 km (approximately 4 miles) in diameter
(75 km2 area) with billions of individual half-wave dipole elements.
The orbital photovoltaic subsystem must be pointed toward the sun with
one degree accuracy, and the microwave transmitter pointed within one
arc minute. The land area needed would be at least 300 km2 (Ref. 29)
and possibly as high as 900 kmz. Transportation of one satellite would
require of the order of 50-500 flights of a new heavy-lift launch
vehicle (HLLV) possibly 3 to 5 times larger than today's Saturn 5. There
would be between 1 and 5 flights of the HLLV per day. An illustration
of the SPS system is shown in Figure 4-10.

The major economic and technical uncertainties in this sys-

tem are:
° photovoltaic performance and cost.

] heavy 1lift launch vehicle, chemical and ion tug

boost systems cost.

° nicrowave link efficiency and cost.
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) economic feasibility of space construction in an

orbital factory.

e economic feasibility of constructing lightweight

deployable strictures.

Possibly the area most sensitive to cost in the above items is the uncer-

tainty of man's productivity in the construction and operational phases

(Ref. 30). )

The source of most information on the photovoltaic SPS was
the study conducted by the ECON team under contract to Marshall Space
Flight Center (MSFC) (Ref. 28). Additional information was obtained
from study teams at MSFC (Ref. 31) and the Johnson Space Center (JSC)
(Ref. 29).

The general approach taken was to use the ECON study defini-
tion of subsystem cost and performance (Ref. 28) in all areas except as
noted below. Whenever MSFC and JSC data were available, they were com-
bined with the ECON data to form a composite average. These same
sources were used to provide a high and low bound. The approach taken
in the initial ECON study is to establish a goal in each major area so
that when the combination of all these subsystem goals are taken together,
the resulting system cost is competitive with competing baseload energy
costs. The initial ECON study (Ref. 28) considered the cost goal to be
less than 30 mills/kWehr and the SPS capital cost was established at
$7.6 billion dollars for 5 GWe (x$1500/kWe). A later report (Ref. 30)
doubled this estimate to approximately $15 billion (x$3000/kWe) and repre-
sented a departure from the cost-goal approach. It is more an estimate
of future cost and performance of the SPS system. Independent studies
of SPS cost-performance were periormed by MSFC and JSC; their results
are discussed later. The major uncertainty 1s how close it is possible

to come to these cost-performance goals,

The amount of RD&D has been estimated by ECON and JSC to be
about 60 billion to put up the first 5 GWe SPS plant. It is beyond the
scope of this report to attempt to verify that the SPS cost-performance
goals can indeed be achieved after this RD&D investment.
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The major exception to the above approach, as was indicated
earlier, is in the photovoltaic subsystem. Here the same approach used
for the ground solar photovoltaic plant was adopted. That is, the 1985
ERDA cost goal of $0.50/wp was assumed to be achieved for terrestrial
photovoltaics. This was interpreted to be accompanied by an expected
module efficiency of 137% air mass 1 (AM1) at a cell temperature of 28°C
(Ref. 32). Projections of design modifications and resultant perform-
ance of these cells for use in space in the year 2000 wecre made with
the assistance of members of the low cost silicon solar array (LSSA)
project at JPL. For example, the 30 to 60 mil cover thickness will be
reduced to 1 to 3 mills with a resultant cost savings. Additional

processes may be used on the front and back surface to improve perform-

ance by approximately 25%, resulting in a net photovoltaic cost increase

of about 60%. The cell thickness will be in the range of 2 to 10 mils.

There are several different approaches being considered to
achieve the low cost terrestrial solar cell such as refining the current
ingot slicing approach or the edge defined £ilm growth (EFG). For the
terrestrial application, there is no particular need for a thin cell as
an independent design goal. The cost is the main driver. If the ingot
slicing technique is used to achieve the cost breakthrough, the result-
ing cell thickness would be about 10 mils. This would probably be
unsuitable for the SPS since z 10 mili cell wouild cause the system costs

to be about 25% greater compared to a similarly performing 4 mil cell.

For the SPS, the reference cell thickness is assumed to be
4 mils, and this assumes that EFG or other growth techniques was used
for the terrestrial cell. If this is not the caie and ingot slicing
techniques are used, the SPS program must perform the additional devel-

opment to achieve the low cost~tainner cells.

In vhe analysis, account was made of AMO (no atmosphere) and

radiation damage was considered over the 30 year projected life of the
plant. Solar flare activity as well as normal radiation was considered
in a preliminary analysis, resulting in a reduction factor of 0.89 to
account for the average loss of power over 30 years (Ref. 32). More

recent and more detailed calculations may increase the radiation related

degradation.
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A cost and performance model was independently developed to
calculate SPS system performance and cost (Ref. 32). The reference
costs used to project SPS plant economics along with lower and upper
bounds are shown in Table 4-4. The nominal values (Mid) are based on the
assumption that a successful program is achieved in each major area. As
a guide to understanding these goals, the current cost for silicon
photovoltaics is about $15.50/Wp (Ref. 33) compared to the $0.50/Wp goal
used as a basis for the cost yrojection shown in Table 4-4. The payload
cost to LEO based on a Saturn 5 boost system is about 1100 $/kg (Ref. 28).
The goal is 145 $/kg to GSO, and the LEO payload cost would be about
100 $/kg of this total.

Using the Mid values for most subsystems, the total capital
cost is shown in Figure 4-11 as a function of paylvad cost and photo-
voltaic efficiency. The costs are based on a plant startup in the year
2000 for a 5 GWe plant. The costs shown in Figure 4-11 are the unit
cost and exclude RD&D. The reference cost is 5600 $/kWe or 26.5 billion
dollars per SPS using the 4 mil cell.

The resulting energy cost as a function of payload cost and
photovoltaic efficiency is shown in Figure 4-12. The reference cost
is 118 mills/kWeh using the 4 mil thick cell. The original ECON results
(Ref, 28) are show. at 7.6 billion (1520 $/kWe) as a point of reference.
A more recent study by ECON (Ref. 30) increased the expected capital
cost to 14.9 billion dollars or 3000 $/kWe. They estimated chat there
is a 10% probability to achieving a cost of 2400 $/¥We in 1974 dollars.
Other estimates range from 15 billion to 28 billion for a 5 GWe SPS
(Refs. 29, 31) using a factor of 1.22 to project to a year 2000 start-
up in 1975 dollars.

To establish the upper bounds of costs, all the "high" cost
and low efficiency estimates are combined. The lower bound of cost
combines all "low" cost and high efficiency estimates. Figure 4-13
shows the energy cost results of this bounding, It is more probable
that the high cost estimate can be achieved, than the low cost estimate.
There is a difference between r“ese results and the similar figures for

ground solar (Figure 4-7), nuclear (Figure 4-2) and coal (Figure 4-~3)
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Table 4-4. SPS Reference Subsystem Costs — 5 GWe

Major Area Low Mid High

Solar Blanke:(l)

- Cost, $/m’ 48 104 160

- Efficiency ir GSO, % 9.7 8.4 6.2

- Thickness, mils 2 4 10
Payload Cost(z) to GSO, $/kg 71 145 209
weight of 3 structural 0.092 0.18 0.37
Support, kg/m?
Microwave(a)

- Cost, $/kW 332 520 840

- Efficiency, % 70 60 40

- Spaceborne Wt., kg/kw 1.16 1.33 1.54
Operation and Maintenance(s), 33 108 150
106 §/yr
Construction Time, yrs 3 6 10
Load Factor 0.99 0.864 0.75(6)
(1) Based on same terrestrial cell used in Section 4.2 but modified

(2)
(3)
4)
(5)
(6)

for orbital use. Terrestrial cell cost was assumed at $0.50/
W, and had 13% module efficiency in air mass 1 (AMl1) at 28°cC.
Expected range of terrestrial cell efficjency was 10 to i5%.
Orbital version of this cell has reduced cover thickness, and
improved performance by additional processes to front and back
surface at additional cost. AMG efficiency is 12.5% at 28°C
for the 4 mil thick cell,

Nominal from ECON and MSFC; range from JSC.

From ECON and MSFC; weight normalized to solar blanket area.
From Raytheon and NASA/LeRC.

From ECON, MSFC and JSC. First year O& cost.

Based on losing power fcr 24 hours each time SPS passes in
earth's shadow.
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EFFECTS OF SOLAR CELL EFFICIENCY AND SPACE TRANSPORT COSTS

® DELIVERED POWER: 5GWe @ YEAR 2000 PLANT STARTUP

240 ; - T y
SOLAR ARRAY (CR = 2)
sooh = 4 MIL SILICON; 1 MIL COVER
O NOMINAL VALUE MODULE
= EFFICIENCY:
@ LOW ]
§ 160} '
2 imio
E
ol HIGH ]
o |
8 I
c |
& 80fF | | 4
| :
w | ECON
40F 'r——‘—_—/—.-’} -
NASAIJSC COST RAMIGE |
. — CONSTRUCTION IN LEO

0 a0 80 120 160 200 240 280
PAYLOAD COST TO GSO, $/kg

Figure 4-12. Photovoltaic SPS Energy Costs

power plants. A major assumption has been that the RD&D dollars would
create successful results in each of many major subsystem areas (e.g.,
power conversion, low cost structure, heavy 1lift vehicles, etc.); that
is, all goals are achieved. Projecting the orbital photovoltaic SPS
cost and periormance is much more uncerrain than any of the other sys-
tems in assessment because of the uncertainty in the successful develop-
ment of all of the major subsystems in addition to the design changzs
which may be necessary to avoid or minimize possible social impacts

discussed in Section VI.

The SPS size is established at 5 to 10 twWe to keep the system
cost down, while the transmitting power is set at 5 GWe to limit the
intensity of the micr.-iave beam to 23 w/cm. A power plant of this size

even with a high load factor (x0.9) would introduce reliability problems
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into utjlity grids. There would be an increased need for margin (extra
back-up capacity) just to maintain grid reliability. This effect has not
been numerically evaluated in this report but would raise the capital

cost of the SPS.

4.4 COMPARISON OF PLANT ECONOMICS

The typical coal, nuclear, ground solar thermal-electric,
ground solar photovoltaic and orbital photovoltaic central power plants
were identified and a performance estimate was made for each. The time
frame of interest was for a year 2000 start of plant operation; 1975
dollars were used. The reference or expected costs were identified and
the resulting plant capital and energy costs were calculated. In
addition, low and high bounds were estimated for each major subsystem.
The combination of all low subsystem cost estimates and perforuwance
upper limits were used to establish the lower bound for system cost,
while the combination of all high subsystem costs and lower performance

limits were used for the upper bound system cost. .

These results are shown in Figure 4-14 for the five cate-
gories of plants. The conventional systems still appear most attractive
economically at the year 2000. In today's dollars, the expected energy
costs are from 58 to 76 mills/kWeh. The lower bound could be as low as
39 mills/kWeh and the upper limit to costs as high as 133 mills/kWeh.
The ground solar thermal is expected to be under 90 millé/kWeh in the
year 2000. The cost uncertainty is similar to coal in that the low-high
bound range is about 50 mills/kWeh. The cost goal of the ground photo-
voltaic plant (128 mils/kWhr) at a solar load factor of 0.70 is about
10 mils/kWhr greater than that of the SPS with 4 mil cells. Also
shown is the initial ECON results (ECON I), their more recent estimate
(ECON II) and the results from MSFC and JSC adjusted for a year 2000
start-up in 1975 dollars.

The ground photovoltaics has greater uncertainty than the
conventional or solar thermal plants due to the nature of development
needed to achieve the low cost breakthroughs. The orbital photovoltaic

plant has even greater uncertainty in expected costs. The reference
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point for orbital photovoltaics is based on the expectation that not
only will low cost photovoltaics be achieved, but that a number of
major technological advances will occur in the areas of launch and
transport costs, effectiveness of man in space, large structures, con-

trols, microwave, etc.

To a great extent, very different things are being compared.
Even though these plants are all baseload central electric plants,* they
are at very different stages of development. The basis for the uncer-
tainty in cost, therefore, is quite different from system to system, as
is the difficulty in predicting these costs. The nuclear and advanced
fossil plant are in a relatively mature state of commercial development.
Still, there is great uncertainty in tl:2ir future capital and fuel costs.
This is due primarily to the broad social resistance to these power
plants. Thus, the range of costs shown for the conventional plants
attempts to quantify this social acceptance uncertainty in terms of

economic impacts.

The ground solar plants have future cost uncertainty basic~
ally due to their status; these plants are in an earlier part of the
development cycle. Prototype subsystems exist now and a pilot plant
will come on line in 1980. Cost predictions are not based on sufficient
hardware experience to be firm. Yet, the problems can be considered to
be engineering problems amenable to detailed design, test and verifica-
tion. Solar plants are relatively clean with modest social and low
public impacts as will be shown in the next section. Social resistance
is not felt to be a problem even though it is unlikely that solar ther-
mal plants will be embraced by all Americans as totally acceptable ever
if it is for just the large land use at the plant site. If any cost
escalation due to social resistance should develop, it probably would
not develop until significant introduction of solar plants; this would
not happen until after the year 2000. Therefore, cost predictions until
2000 should have a minimal social resistance effect for ground solar

plauts.

*
The ground solar plants were evaluated as hybrid to achieve the
necessary grid reliability.
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As discussed at the end of the last section, the orbital
photovoltaic plant is earlier in the developuent phase and greater
uncert: inty exists. The large cost range in Figure 4-14 indicates this
to some extent, and additionally, the reference cost prediction is much

more uncertain than for any of the other plants.
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SECTION V

ENERGY SYSTEM ECONOMICS

Bus-bar cost of energy at the power plant was estimated in
Section IV. The different types of power plants may be located at widely
varying distances from the end user in the load center. This difference
in transmission distance may introduce additional differential costs
among the various central power plant types. To account for transmission
differential costs, the complete energy system has been evaluated. The
system includes the power plant and transmission and distribution links
to the user. Candidate energy systems have been identified for zoal,
nuclear, ground solar and orbital solar plants, and total system cost
has been calculated. The time frame of interest is some time after the

year 2000 when solar energy is more than a regional source of electricity.

Many techniques of transmitting energy were reviewed such
as: overhead electric using dc and ac; underground electric using dc
and ac and superconducting dc: and even hydrogen gas transmission (Ref.
34). Of these techniques, the high voltage (+ 800 kV) overhead direct
current (dc) is the least expensive for distances greater than 300 to
500 miles. For distances less than this, the high voltage ac used in

existing transmission lines is most attractive.

The two main parameters which determine the transmission
cost for moving large blocks of elcctrical energy from the central plant
to the citv gate is the transmission distance and electricity bus-bar
cost., The cost dependency on distance is obvious, but the dependency on
bus-bar costs may not be. The electrical losses during transmission
amounts to a certain fraction of the input energy. The cost of this loss
is a traction of the input cost of electricity or the bus-bar electricity
cost., Thus, the total transmission electricity cost is the sum of the
cost of the transmission equipment which is related to distance, and the
cost of the transmission inefficiency which is related to bus-bar elec-
tricity cost. The resulting costs are shown in Figure 5-1 for overhead
ac (756 kV) and dc (+ 800 kV) transmission.

The economics used is the same as described in Section III,

but uses 10% interest, assumes .a 30 year payback life and a year 2000
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startup. Land costs are assumed to be $1000/acre. The transmission
cost is oprimized for each combination of distance and bus-bar energy
cost. The cost for 2000 miles of dc transmission (Ref. 35) is about

8 mills/kWeh if the input energy costs 100 mills/kWhe. The transmission
efficiency is 0.965 at this condition. High voltage, overhead ac trans-
mission for 300 miles costs about 5 milis/kWhe with 100 mills/kWhe plant
energy. If 10%Z of a 2000 mile transmission link were placed underground
to minimize visual and environmental impact, the transmission cost would

increase by 207%.

The cost to distribucre energy within the load center is
5.5 mills/kWhe (Ref. 35) based on the Southern California electric load
center. This includes not only the distribution system construction and
maiutenance costs but also central office customer services and billing
costs. 7The transmission and distribution costs are added to the refer-
ence plant bus-bar energy costs to make up the total :ystem energy cost.
The total cost of transmission and distribution is low compared to the
projected cost of bus-bar energy. The sensitivity of the total cost of
delivered energy may be a weak function of factors which determine the

energy transport costs.

The national average electric transmission distance in the
U.S. is 300 miles (Ref. 34). For coal based plants, it is assumed that
this distance will still be typical even after the year 2000. The
cleaner coal plants that are projected for use around the year 2000
should be able to maintain current transmission distances to the load

centers.

Nuclear plants are not sited in or near metropolitan areas,
but are in the regioral utility grid. Thus, 300 mile transmission dis-
tance is considered close to typical for nuclear plants. After the year
2000, nuclear plants may be located further from load centers, and the
possibility exists that plants will be co-located with reprocessing
facilities in order to minimize nuclear fuel cycle hazards and to enhance
operational safety. The distance from these regional nuclear centers
(nuclear parks) to load centers may be approximately 1000 miles. There-
fore, the average distance between a nuclear power plant and load center

may be from 300 to 100 miles qfter the year 2000.
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For ground solar elec!ric, the questions raised are: (1)
where is the area of high insolation, (2) how much of a resource is it,
and (3) can it be used as a national energy socurce. The combination of
high insolation (>5 kﬂh/mz-day) and low cost/low use land is in the
Southwest part of the U.S. in an eight state region with a total land
area of one million square miles (1/3 total continental land area). The
use of solar thermal energy in large central power plants may be confined
to just a regional form of energy because of this location of the energy
source. To prevent strictly regional use of the solar energy, there
must be enough for national uses, and the energy must be transportable
outside of the Southwest region. Of the one million square miles of land
in the sun bowl, about 27 to 16% is potentially available and suitable
for use as a solar power plant (Ref. 36). Today's total national elec-
trical energy use could be met by using only 1/2% (0.005) of this 8 state
land area. Thus, this estimate of available land is 4 to 32 times larger

than needed to generate the current national electrical requirements.

The other possibility is to use the solar energy available
within the regional utility grid. For widely separated locations such
as Charleston, SC, Creat Falls, Montana, and Blue Hills, Mass., the
total normal solar energy is 0.67, 0.69 and 0.65, respectively, of a good
Southwest location such as Inyokern, CA in the Mojave Desert. The rela-
tive power performance at these sites is 0.84, 0.80 and 0.75 of inyokern
(Ref. 37). The solar energy cost at these locations 1s thus 16% to 25%
higher than that of Inyokern. This represents an upper limit to the

acceptable costs for a long distance transmission link.

The second major question of using Southwest lands for
national solar power is whether or not there is sufiicient cooling water.
For all practical purposes, there is no water available in the Southwest
region for power plant cooling. The only rivers, with the exception of
those in central California, are the Coloradc and the Rio Grande which
are overcommitted now. Wells are the only other source of cooling water
indigenous to the region, but are not sufficient for national power
requirements using current cooling techniques. These limited resources
can be conserved by switching to dry cooling towers which have a capital

cost and operating efficiency penalty of about 10% compared to the use
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of wet cooling tcwers. The solar plant costs presented in Section III

were based on dry cooling towers to minimize cooling water requirements.

Assuming that the abundant solar energy resource in the
Southwest sun bowl is used for national electric power, the required
transmission distances would vary from 300 miles for local regional use
to as much as 3000 miles. For example, the distance from the middle of

this 8 state area to Chicago is about 1800 miles.

Orbital solar power plants can potentially have the receiving
antenna near the load centet. The land area is similar to ground solar
thermal per unit energy, but must all be in one location. A 5 GWe plant
needs about 300 km? of land which is a circle 12.5 miles in diameter.
This large a piece of land, and the possible public perception of health
dangers from microwave energy, may require the orbital ground receiver
to be placed at large distances from the load center. Therefore, the
transmission distance could vary from 300 to 1000 miles. The likely
range of transmission distanced for each type of central plant for intro-

duction after the year 2000 are shown below:

COAL =300 miles
NUCLEAR 300 - 1000 mil.:
GROUND SOLAR 300 - 3000 miles
ORBITAL SOLAR 300 - 1000 miles

Table 5-1 displays the results of adding the transmission
and distribution energy costs to the bus-bar energy cost. There is a
cost increase of about 3 mills/kWe-hr for ground solar relative to other
approaches. This is not a strong enough influence to change the econ-
omic results of Section IV. The transmission and distribution costs,
which are about half the total cost of electric energy today, will drop
to less than 20% of the total by the year 2000.



*
Tatle 5-1. Comparison of System Energy Cost

Energy Cost, mills/kWe hr

Type of Plant

Plant Transmission & Tt

Bus-Bar Distribution -
Orbital Solar

1) (2)

- Silicon Photovoltaic 118 19 137
Ground Solar(3)
- Silicon Photovoltaic 128(4)(5) 22(6) 150(5)
- Thermal 89(7) 18(6) 107(7)
Coal 58 12(8) 70
Nuclear 76 15(2) 91

(1) 4-mil thick cell.

(2) Transmission distance = 1000 mi.

(3) Terrestrial plants based on hybi1id operation at load factor
= 0.864 to meet grid reliability with solar load factor = 0.79.

(4) Average of battery and pumped hydro storage.

(5) S:and-alone solar = 145 mills/kWhr bus-bar and 169 mills/kWhr
tctal energy cost.

(6) Transmission distance = 2000 mi.

(7) Stand-alone solar = 96 mills/“Whr bus bar and 115 mills/kWhr
total energy cost.

(8) Transmission distance = 300 mi.

*
Plant startup in year 2000; reference design.
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SECTION VI

SOCIAL COSTS

The methodology developed for the comparison of energy
systems is based on a total cost assessment. This is made up of utility
or consumer costs (internal costs) (see Sections IV and V) and so-called
external costs such as Federal RD&D costs, health effects, resource
consumption, environmental residue and impacts and other social costs
as shown in Figure 6-1. Although significant RD&D efforts are conducted
by EPRI and utility equipment suppliers, only the RD&D costs based on
Federal experditures from general tax revenues are considered. A
methodolcgy is «=veloped for calculating the equivalent cost of _.nese
RD&D investments using a social discount rate so chat it may be added

to the direct atility ccst of energy.

The health effects associated with tke complete energy cycle
for the various technologies can be summarizeZ in terms of parameters
such as occupational and general public deaths, disease and injury.
These non-fatal disease and injuries have been transformed into a
common unit of person days lost (PDL) by associating a particular type
of injury or disease with the typical PDL resulting from that injury or

disease.

Resources requirad for each energy system are tabulated.
These resources such as plant construction material, fuel, construction
material used in the rest of the energy system, manpower, land, cooling
water and other resources are accounted for in the internal cost of the
plant. However, the absolute magnitude of these resources are important
in themselves in a world of increasingly limited resources. The amount
and type of resources requiied is one of the many distinguishing charac-

teristics of an energy system.

Envirormental impacts, such as excess waste heat, are cal-
culated, and environmental contaminants rejected into the air and water

"other" social costs

are noted along with solid wastes. The category of
involve poorly understood impacts due to environmental, resources,

political, etc., effects.
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In this report, information is developed for each central

electric plant coasidering the complete energy system; i.e., the

SRR . AT 1 s

acquisition of materials and equipment necessary to build the plant,

the construction of the plant and the fuel cycle facilities required to
operate and maintain the plant. The seven stages of thz energy system
are shown in Figure 6-2 along with vhe social cost matrix. "Each major
type of central electric baselovad powef plant is evaluated for each ;

combination of social cost and stage of the energy systen. i

This information generates a data base for a one-to-one
comparison of competing systems as regards total social cost, rather than
only the projection of commercial economics for competing baseload
electric power sv-iems. Ihese additional areas do not represent a
complete Jisting of energy system characteristics. Nor is the depth of
analysis . wnsic2red definitive in each area. This study is an attempt.
to organize in one place a number of important characteristics of these
plants on a consiscent basis so that at least a framework 2nd some data
exist for evaluating the SPS>against likely competing energy systems.
It will be necessary in the final analysis to combine the various cur-
rencies (consumer dollars, Federal tax dollars, People Days Lost tons
of ‘eel, tons of NOx, waste heat, catastrophic impact, impacts on life
sty , political implications, etc Y invo_ved in the different study
areas to reach a complete understanding of the impact of each energy

system.

6.1 RESEARCH, DEVELOPMENT AND DEMONSTRATION COSTS

Projected RD&D costs and estimated date of commercialization
were determined for each of the electric generation systems considered
and are summarized in Figure 6-)}. The costs are simply the summation of
expected costs in constant 1975 dollars. It is not a present value in
1975 dolless using an appropriate discount rate. The data for the con-
ventio.al fissil and nuclear plants is from Re’erence 7. The solar i
thermal JP&D estimate ie based on informatioﬁ in Refevrences 27, 28 g
through 3. while that of the terrestrial photovoltaic is taken from
References 27, 38, 40, 41, 43 and 44. The orbital photovoltaic RD&D

cost estimate is from Reference 28.

6-3

- - - - - l
B = L o e B e P =~

i AN S VR Bk, b

N

o\

\



/ . - i e a s WA TN e i ———— B BT A P b RS N LR 4 o s (N ) a e

1SOD IVID0S

6-4

——— XTa3eR wayskg AB3x9uy °z-9 2anBdrg
— . SLOVAWI ¥3HLO
IVINIWNOYIANI
4, $3D3NOS3IY
A—t
| SIDVdWI H11VIH
| 150D azay
- _ 1SOD AlLLN
| . MWI0S IVI0S IVIIDNN NEZN4 —_S1S0D VID0S
| vLiIg¥0 | aNNO¥O 3dAL INVd
| .
— STVINZLYW NCILOMYISNOD 40 NOILISINDDY ¥
| NOILONYISNOD INV1d _
| S
| $13N3 ONILSIAYVH _ oo&«
“ $13N4 ONIAVEOdN | 9«0
A $73N4 ONILIOISNVAL &
o ALISIILOTII ONILVEINGS _ 3 Jw«
4, NOILVAILDV3A LNVId GNV SIISYM VNI " &
S o
;‘ . ! o/ﬂ,,v M..M/.z
L) [N f,W/,.w i) ,/ e, ﬁ. et hon Sy e AL o e e 5 » .



1L
e e e RG]
i
"
:
i

¥$380) (@%Qy) UOT3IBIISUOWSO PUE ausudoTaaaq ‘yoaeasay pd103foag °€-9 2an3T 4

LINVId *OW3a @MW 0L OL GIWNSSY IAUND ONINAVIT
a3an1dX3 g'3AY 1SVd ‘3¥NLNI OL §L61 WO

¥v10S :
aNno¥m ¥v3I10NN 1v09 n
a39
JIVLTI0A a3zigind AA,
-010Hd ¥yadn 1 310A)
¥v10s TYWYIHL * @3NISWOD | !
VL1840 93Y "N3D M Sy9 { 3nyoS o :
, 17| AV e
HOVOU¥ddV LNV1d 33IMOd | _ A el | 42 b |
913103dS ¥04 a%Y Umg_n__v = u_&\ sl : h\m ¢’o
¥¢%G8 . : ,.
KX
861 S
leed I86T J 0°1 2 ;
g861 - 1861 : © :
o4 | 86l v86T 4z 8 3
NI YYOM TV¥IN3IO | = & !
404 G789 L¥OddNS 3 m
i R ;
v Hot 2
WV¥O0Ud L861 =
a'20¥ 4O GN3 ¥O 31va doz *°
NOILVZ TVID¥IWWOD = ¥V3A
3000 7 -1 0s
661
s — o001

AT G e a

PEUR

et R A 5 < ) W 786 W § oo P | 0 i 1 b S o Sy RN S O s O v v

PR ce ot i oo
FLER i e coade et LRV ' “ B - - S
. N \ - | . e as I , e v - :
. PR " <N - . e B LT O - . .



Figure 6-3 shows estimated program funds that are directly

r~lated to a particular type of power plant system as well as the RD&D
expenses which generally support these power systems. Where appropriate,
these general support funds are equally distributed ouver all the types

é of power plants that will benefit from the support work.

In comparing the conventional power plants, it is noted that
the total direct and support RD&D is about $1.5 billion for the coal
gasification with combined cycle conversion power plant. The other coal
approaches are estimated to cost $1 billion or less. The LWR and LWR-Pu
(not shown) is estimated to have a total RD&D of $1.6 billion by 1984 in
1975 dollars. The direct RD&D for the LMFBR is estimated to require
; . $7 billion, and the total is at least $10 billion.

The general support RD&D costs for the LMFBR are the largest
(3 billion). The LWR and LWR-Pu require about $1.2 billion each for

support RD&D for reactor environmental controls, fuel cycle environmen-

tal controls, uranium enrichment and waste disposal. The three coal
plants require a support RD&D cost of $0.6 billion each for mining
. health and safety, fuel cycle, environmental controls and plant environ-

mental controls.

The total RD&D for the central receiver solar thermal plant
has been estimated to cost $1.1 billion through completion of the 100 MWe
: commercial demonstration plant in 1985. The ground photovoltaics has
‘ been estimated to require from 0.2 billion to 0.4 billion dollars
including a 10 MWe commercial demonstration plant in 1985. This figure
assumes the equal sharing‘bf»thg total low cost silicon photovoltaic
program between two areééga the central power application and all other
applications, The cost range shown in the table is based on a cost
learning curve range of 75% to 85% to reach the low cost silicon module
cost goal of $0.50/Wpeak (1985).

The RD&D cost for orbital solar has been estimated to be
about $60 billion leading to the creation of a 5 GWe plant by 1995
(Ref. 28).

The range of RD&D costs of the systems shown in Figure 6-3
vary by a factor of 200 from about $0.3 to $60 billion. 7To make the
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magnitudes of these RD&D cost estimates more understandable, a
methodology was developed which spreads these costs over the amount of
energy that is anticipated to be generated by the new commercial plants.
A levelized energy cost has been developed which assumes equal disburse-
ments of RD&D funds each year between now and the year of commerciaiiza-
tion. Since these fuads are a federal investment in an energy option,

the present value of these sums is ‘calculated using a social discount

rate rather than market place discount rate. The social discount raté

was assumed to be 10%, a rate often used by various governinent agencies

in evaluating potential projects (Réf. 9). Mgiéfgetéiiéd,;pformaﬁibn '
on the procedure used to levelize the RD&D gosqs‘qéﬁ_yé dB;qined in

Reference 45. The projection of the rate at ;hich these various types

"of power plants can be installed is sﬁéwn-in Figure 6-4 and the total

national US installed electric generating capacity is taken from

Reference 45.

Two bounding rates of successful power plant implementation
are shown in Figureu6-4. The lower one is based primarily on the LWR
nuclear precedent which achieved 40 GWe in 20 years after the first
commercial demonstration. The higher installation rate uses a similar
initial rate of power plants introhuction, but uses very much larger
power plants (x5 GWe versus 0.1l GWe). The higher rate is considered as
an apper bound for SPS sized plants (5 GWe/plant), while the lower rates

are more the lower bound for smaller ground solar plants (%0.l GWe/plant).

The resulting levelized energy cost for various amounts of
RD&D investment are shown in Figure 6-5 for the upper and lower rates of
implementation of new ground power plants and orbital power plants.
The energy cost is presented as a function of the time after commercial
implementation over which the RD&D charges are allowed to be paid back.
I1f one feels that ten years is a reasonable amount of time to repay the
RD&D expenditures, the energy cost surcharge that would have to be
extracted from the generated energy over the first ten years would be
10 mills/kWe-hr for an energy system costing $1 billion at the lower
implementation rate. It would be 42 mills/kWe-hr for an energy system
with a total RD&D investment of $60 billion at the higher implementation

rate. If one used 30 years for the expected payback, the equivalent
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energy cost would be less than 1 mill/kWe-hr and 8 mills/kWe-hr,

respectively. A summary of these results is shown in Table 6-1.

At an implementation rate between the upper and lower
bounds, the equivalent energy charge for the LMFBR ($10B) would be from
4 to 50 mills/kWehr for a payback time of 10 to 30 years. The SPS
($60B) would have an 8 to 40 mills/kWehr RD&D equivalent energy charge
for a 10-30 year payback time. Once the expected payback time is estab-
lished by the decision maker, the resulting equivalent RD&D energy
charge can be directly added to the utility cost of Secticns IV and V.

6.2 RESOURCE UTILIZATION

For each electric power production system, estimates have
been made of the various resources that the system utilizes. Resource
factors estimated include: (1) building materials, such as the concrete,
structural metal and pipe needed to construct the plant, (2) fuels
required for the operation and maintenance of the plant, (3) human
resources such as the number of man-hours required to construct the

plant, including skilled and unskilled workers, field supervisors and

*
Table 6~1. Summary of Equivalent Energy Cost of RD&D Dollars

Fquivalent Energy Costs, mills/kWe-hr
Payback Time, yrs
Power System RD&D, 10 30
Type 3B Rate of Plant Implementation
High Low High Low
Coal . L5 1 15 0 - 1.0
LWR 1.4 1 14 0.2 0.94
Solar Thermal 1.1 0.8 il 0.1 0.74
Photovoltaic 0.3 0.2 3 0.04 0.20
SPS 60 42 800 8 40

*
10% social discount rate,

6-10



£ T et B ¥ Gt 0 s mn e

engineers, (4) water consumption and (5) land utilization, including
land for the electrical power plant site, land associated with harvesting
the fuels, transporting the fucls, upgrading the fuels, land associated
with management of the final waste and land needed for transmission of
electric energy to the load center. Some land will be committed tc the
particular electfical power system only temporarily. Other land, such
as that used at a nuclear reactor site, or the land used for the storage
of high level radioactive waste, will be essentially nermanently com-
mitted to these systems. Hence, the type of land use varies vastly from
one system to another. Also of interest is the energy payback time for
each system. That is, the amount of time that the plant must operate to
payback to society the energy it took to form the materials needed for
construction and to maintain the supply of fuei. The last resource
category of interest is construction capital which was estimated in
Section IV. Table 6-2 presents a summary of quantitative data in each

of these resource areas.

6.2.1 Material Requirements

Reference 7 presents the material requirement for four types
of fossil fuel systems and for four types of nuclear systems. The
material requirements are presented for both construction and for opera-
tion and maintenance. Reference 45 develops a similar data base for
several solar thermal electric power plants such as: 1) the central
receiver (power tower), 2) the parabolic dish collector with a small
heat engine on each dish, 3) the parabolic dish collector with steam
transport to a central Rankine steam plant, and 4) a photovoltaic rlant

using silicon solar cells,

These data are quite extensive and will not be discussed in
detail here. However, in order to make a generic comparison betweer
the materials required to build different electrical power plants, five
widely different systems are compared (i.e., a light water reactor, a
coal fired system, a "power tower" central receiver, a terrestrial
photovoltaic plant and the orbital plant). Table 6-3 shows the number

of tons (per megawatt of electrical power output of the plant) of

6~11
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steel, mechanical parts, concre :, silver (or silicon), glass and

aluminum required for these five systems.

The major element in the .olar thermal plant is the helio-
stat (mirror) which reflects and concentrates the insolation onto the
boiler. The material estimate is based on an early pi2liminary design
by the Honeyﬁell Corp. (Ref. 46); that design suggested a weight of
approximately 10.5 lb/ft2 excluding concrete in the foundation. More
recent designs are lighter (9 lb/ft2 from Ref. 47) even though they
still use glass and metal. A third but more speculative design is based
on an aluminized mylar reflector in a clear tedlar dome (Ref. 48). This
design is very light (4 lb/ftz). it is not clear at this time which
heliostat design will Le selected for commercial applications. The
1C.5 lb/ft2 des1gn has been used for the re¢scurce estimates to be conser-
vative; these resources may be reduced by approximately 60% if the

lightest design proves acceptable.

The solar chermal power plant requires about a factor of
15 times the construction material than a nuclear plant and its fuel
cycle, and approximately 35 times the construction material of the coal
fired plant and the facilities for the fual cycle. (It should be noted
that the coal plant with stack scrub requires 2.3 times the material as
the reference coal plant.) The photovoltaic plant requires about 1/3
of the material of the solar thermal plant. The SPS energy system

requires about the same amount of material as the LWR.

The solar thermal power plants using the distributed dish
in various design approaches were very similar in weight to the central
receiver. Thus, only the central receiver type plant is displayed since

it is typical of all solar thermal plants,

These differences in the amount of materials needed for
plant construction hive several related impacts. One is the amount of
material itself which causes a drain on resources and may cause supply
shortages and escalate prices. In addition, there are heaith effects
as a result of mining, transporting, ani fabricating the material into

compouents and the eventual construction of the power plant itself.
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Since a solar thermal plant uses 15 to 25 times wore materi:l than is
required for conventional plants, it has greater material relat..

impacts.

By combining the weight of structural steel with mechanicail
equipment requiremente and estimating the total life cycle material
demands, the materials required per unit energy (MWe yr) that the.e
plants produce over a 30 year life has been developed and is shown in
Table 6-2. To give addicional information on the potential impact. of
these material requirements, the percentage of current US produciion
(1974) (Ref. 49) is also shown in parenthesis in Table 6-2. 7The material
requirements assume -7 inscallation rate of 10 GWe of electrical capa-
city per year which is slightly over 2% per year based on today's
capacity.

As indicated by these results, terrestrial snlar zlants do
consume considerable amounts cf resources at t'e assumed rate of new
plart implementation. Glass (260% of current US proiuction) and concrete
\30%, for solar thermal, and glass (103%) and aluminum (t:5%) for ground
solar photovoltaic a:e the major items. Thece rates of new piant con-
struction would not take place for at laast 20 to 30 years after cc.mer-
cialization and would not occur until atter the year 2010. It would
probably be possible to develop the glass urd concrcte production faci-
lities over this long a time period since the basic constituents of
these products are plentiful. Aluminum is not ac plentiful, and some
substitution v. steel or other structural material mey be needed to keep
aluminum from being a restriction on impiementation. The material
requirements for coal, nuclear : ad orbital plants are more modest than
terrestrial solar and do not require large increcses of cui'rent produc-

tion rates.

The above comparisons have focused on the material requice-
ments tc build the plant. Howeve-. they have not included any considera-
tion of the mateiials required to run the plant; that is, the fuels for
the plant. I. the .ase of the solar plant, the fuel is sunlight and
does not vequire extraction, processing, or transportaticn in the normal

sense. Coal fiied plants, on e other hand, require 3500 metric tons

6-16



per megawatt-year of fuel to be handled (Ref. 50). Over the 30-year life
c:cle of a2 coal plan., 105,000 metric tons of coal are required to con-
tinuously produce 1 megawatc of electrical power. This weight of fuel is
is significantly higher than the 6.1 tons/MWe-yr of material required for
coal plant construction or even the 7.9 tons/MWe-yr of dolomite needed
‘or sulfu. clean up. The total material requirements for a coal plant,
i~cluding .el, is 3514 tons/MWe-yr, which is 35 times the total material
r-~uirements for the solar thermal plant (305 tons/MWe-yr). Hence, in
terms of tons of material requirement for the coal plant and the solar
plant, one sees that t'.e solar plant requires far less material over the

life cycle of the plant.

Coal is a non-renewable resource while steel, aluminum,
glass, etc., are partially recyclable since they can be reprocessed
with a fraction of the original energy reqired for new mining and
nrocessing. This adds another dimension to material consideration since
we are depr’ving future generations of the use of coal as a resource
for applications that depend uniquely on fossil rn.atevrials. The
unnecessary ronsumption of non-renewable resources may appear indefen-
sible to future generations. Balancing the needs of the present versus
future generations is a difficult aspect of coal based systems. Uranium
also shares this feature with coal and is in much shorter suppiy when
used in a LWR than coal in this country. It may be difficult to commit
to current types of LWR toward the end of this century due to potential
unavailability of uranium ore (Ref. 51). For nuclear electric power to
continue, a switch would have to be made to a thorium fuel cycle such as
the high temperature gas reactor (HIGR) or to a breeder system such as
the LMFBR,

6.2.2 Land Resource Requirements

The land required for coal plants nust inciude the entire
fuel cycle. This land is significantly greater than the sctual land
use¢ at the power plant 'site. Based on coal mining averaged over

several regions (i.e., half Eastern deep mined and half Western strip
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mined), the land disturbed for the coal plant is in the range of 1950
to 4670 mZIMWe—yr. All but 150 mZIMWe-yr is for fuel related land use
(Ref. 7).

It is possible to reclaim strio mined land in the West or
East., However, depending on a number of‘factors such as ground slope,
annual rainfall, the site specific ecology, acid water, etc., the time
it takes to reestablish the premining ecological balance could vary from
somewhat less than 10 years (Ref. 52) to not being possible at all
(Ref. 52). The allowable replenishment time assumed in this study is

one plant lifetime or 30 years.

The land presently used for the nuclear system is quite
small due to the much smaller amount of material mined at current ore
grades. However, as the uranium ore is depleted later this century,
the amount of land needed could rise substantially and approach the
values shown for the coal system. If the current ore grade of 0.257%
decreased to 0.0l1%, the amount of material mined would be approximately

equal to that of coal per unit electrical energy generated.

A solar thermal plant uses about 2000 m2/MWe-yr based on a
100 MWe plant with 1.3 km2 of mirrored area, a 0.30 ground cover ratio
and a 0.70 annual load factor (Ref. 22). The land requirements are
43 km2 (16.7 miz) for ten 100 MWe plants with a total rating of 1 CWe;
the land area is all at the plant site.

The terrestrial photovoltaic plant area is 3800 mZ/MWe-yr due
to its low energy conversion efficiency, while the orbital solar photo-
voltaic plant requires 2200 mZ/MWe-yr plus the land area needed at the
launch site. The ground rectenna size is 16 times the orbital transmitter
size. Such a rectenna size will minimize system cost, keep ionosphere
radiation levels to less than 23 mW/mz, and hold the microwave radiation to
levels which are within current US standards at the piant boundary (Ref. 29).
Thus the land requirement for a 75 kmz rectenna (for a 5 GWe plant) is
300 km2 this will keep the microwave radiation levels down to 0.10 mw/cm2
at the fence, (This radiation level corresponds to 1/100 of the current
US standard for continuous exposure to microwave radiation, but it is

10 times the current Eastern Euvropean standard.)
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Using the Eastern European standard as the permissible
microwave intensity at the boundary, the plant area would triple to
900 kmz. At this power density, side lobe overlap of rectennas in the
same region may lead to substantial increases in land area requirements

above 900 km2 per 5 GWe plant.

Another aspect of land use is the amount of time that the
land will be used. The nuclear energy system uses some land for a
greater time period than the above assumed 30 years. In order to
provide perpetual storage of high level waste and other wastes for the
nuclear system, a storage area of about 1/1000 of an acre is required
per megawatt electrical year (Ref. 9). This figure does not include
a safety zone which would be necessary around the perpetual storage
area. Assuming that this figure is accurate and that this land will
be used in this manner for a period of a milliom years, this represents
a commitment of 1,000 acre~years per megawatt electrical year. This
translates to about 4 million square meter-years per megawatt year.
The corresponding number for the coal fired system over its lifetime is
0.1 million square meters-year per megawatt electric year. Hence,
using this parameter (the land use area times the duration of use), the
nuclear system's land utilization becomes approximately 40 times
greater than that of the coal fired system and 67 times greater than

the land used by the terrestrial solar thermal power plant.

The land required by power transmission frecwm the plant to
the load center is approximately 1000 mZ/MWe—yr/lOOO mi for overhead
+800 kV dc transmission. Based on the transmission systems suggested
in Section V, the additional land area reguired for each type of plant
has been determined and is shown in Table 6-~4., These data are also

summarized in Table 6-2.

6.2.3 Water Requirements

The availability of cooling water is becoming an increasingly
difficult problem for all power plauts. If once-through cooling is used
and the pre-1973 electric use growth rates (6% per year) are assumed
to continue, then the entire run-off of all rivers in the contineatal

US will be required to cool power plants by the year 2050. By that

6-19



[ ‘

ay3 sauwyl Q1) Laepunoq 3ul jo a8p2 133In0 Iyl 3IE

4

+(aTurT ueedoany uiadlseqy

w/mm T°Q JO AJTSUIIUT IABMOIOTW E O] spuodsax10)xx

spueT xa7dwod youne] JO Junowe umMoUuf;
+pa3edTPUT 98uel JO 93BISA® ST YOTYM IOURISTP UOTSSTUSUEBI] ISy

6-20

¥%(+06S8C 000T-00¢ 0001-00¢ ¥x¢+0022 A1BTOS TEITqID
oSS 000£-00¢ 000€-00¢€ 008¢ oTe3T0oAO3OYd -
059¢ 000€-C0t 000€-00¢ 000¢ Tewxayy -
IeT0S punoid
S9¢L 000T-00¢t 000T-00¢ ST IB9TONN
0L6%-0627 00¢ 00¢ 0L9%-0S6T Te0)
‘ IA9MK /1
u%mzz\me u%wzz\me ‘uoTSSTWSUBRL] Tuw “‘22uelIsTd .cOAmmﬁemcmuHNuzonuﬂB odAL IUETd

‘ypuel TEIOL

103 puey

uoTSSTWSUBL]

sjuawaitnbay puey

sjuswaanbay pue] walsdg ABxaumy

‘$-9 919qFL



time, most power plants will use wet cooling towers rather than once-~

through cooling, and in some locationrs dry coolirg will be necessary.

A 1 GW power plant requires from 14 to 22 million m3/yr
(11,000 to 17,000 acre-ft/yr) of water for heat rejection using wet
cooling towers based on current coal and nuclear power plants, respec-
tively. Once-through cooling uses ar order of magnitude more water, but
it actually evaporates abouvt one-half as much as a wet cooling tower.
A dry cooling tower does not use any water to carry away heat rejected
from the power plant. However, every plant must use some water to
account sor steam losses from seals and other miscellaneous requirements
which amount to only 1 to 2% of the water use of a wet cooling tower
(Ref. 53).

The central electric solar power plants will most probably
be relegated to the Southwest region of the country where good solar
insolation and lower cost, lower use land is available. In this part
of the country there are only two major rivers, the Colorado and the
Rio Grande. The water of both these rivers are overcommitted now.
Wells are the only other source of cooling water indigemous to the
region, but will not support sufficient power plants for a national

power source using current cooling techniques.

Water availability in the Southwest is relatively low. For
example, the maximum capacity of the four major water projects in
Southern California is 11.8 billion m3/yr (9 million acre ft/yr)

(Ref. 54), This is currently used for agricultural purposes and human
supplies. If 5% of this were made availahle for power plant cooling
using wet cooling towers, only 50 GW could be installed (at 0.70 annual
load factor). The 50 GWe would be 10% of the current national installed
electric capacity. However, if dry cooling techniques were used, only
1% of Southern California water could supply enough power plants to meet

curreat total national electric needs.

For purposes of this study, wet cooling towers are considered
for coal and nuclear plents, while dry towers are considered for solar

thermal plants. Costs and system efficiencies used in Section IV were
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based on dry towers for a solar plant and a wet tower for conventional

plants.,

Using wet cooling techniques, both the LWR plant and the
coal plant would consume 24,000 and 9,200 m3/MWe—yr of water, respec-
tively, including the fuel cycle (Ref. 7). (One thousand m3 per year
is 0.765 acre ft/yr.) The solar thermal plant with hybrid cooling
(assuming 1/4 wet cooling use) would be 7000 m3/MWe—yr, while dry
cooling would reduce this to about 500 m3/MWe—yr (Ref. 53) exclusive of
mirror cleaning requirements. Cleaning the mirrors every 5 weeks would
increase the ground solar thermal plant requirements to about 900 m3/

MWe-yr with dry cooling towers.

The ground and orbital photovoltaic plant would use no
active cooling and would have relatively small water requirements
during operation and maintenance. The ground-photovoltaic would require
cleaning (approximately every 10 weeks) which amounts to 620 m3/MWe—yr
water consumption. The orbital system would use water for cooling
during the launch operations, and for rectenna cleaning. (The estimated
water requirements for solar collector cleaning per m2 of mirror area is

based on 0.75 gal per cleaning) (Ref. 55).

Although techniques are available to reduce water require-
ments to much lower than current use patterns (dry-cooling towers versus
once~through cooling), this is done with a performance penalty (~10% of
the efficiency) and capital cost penalty (10-15%). Such penalties
would seriously affect the LWR plant since its thermodynamic cycle would
have the lower tolerance to increases in the rejection temperature due
to dry cooling., Solar thermal and coal systems would be less affected.
Tt.e ground and orbital photovoltaics power plants have minimum water

requirements and are least susceptible to water restrictioms.

6.2.4 Manpower Requirements

Manpower requirements can he separated into a number of
categories but only plant construction, plant maintenance and total
manpower are shown in Table 6-2, The manpower requirements for coal

and nuclear are taken from Reference 7, while those fcr ground solar
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plants are based on Reference 45. Orbital solar plant O&M manpower

requirements are from Reference 28.

The ground solar thermal construction manpower requirement
is about 1900 man hr/MWe-yr and is about 4 times greater than that for
conventional plants. At a plant installat’on rate of 10 GWe/yr, solar
thermal plants would require 200,000 people for construction, while
coal plants would need 43,000 people and nuclear 63,000 people for
plant construction. The operation and maintenance of power plants with
a total of 100 GWe of capacity would require about 67,000 men for the
solar thermal plants including cleaning the mirrors every S weeks
(cleaning manpower is based on 156 mz/manhour from Reference 55), while
15,000 and 9,000 men would be needed respectively at coal and nuclear

plants.

When fuel cycle related activities of mining, transport and
fuel processing are added along with material acquisition activities, the
ground solar thermal plant manpower needs are about 5 times the manpower

needs of the coal energy system (13 times the LWR energy system).

The ground solar photovoltaic plant uses less construction
material, and as a result, has less construction manpower. It is esti-
mated that 808 manhours/MWe-yr is required, a value which is about 1/2
of the solar thermal plant, Material acquisition manpower was not eval-

uated for the ground photovoltaic system.

In general solar plants require more construction, and opera-
tion and maintenance (0&M) personnel. The larger construction manpower
requirements would magnify the initial ("boom') impacts of plant con-
struction on the local and regional economy and social services. How-
ever, the higher O&M requirements would lessen the post construction
("bust") letdown after constructicn. In addition, the solar energy system
requires more manpower during materials acquisition. Due to these greater
manpower needs, solar plants could either cause shortages if manpower was
limited, or if unemployment was a persistent problem, it would provide a

social benefit in creating additional jcbs.
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Conventional plants would be more distributed throughout
the country near populated load centers, while ground solar central
electric power plants would be, for the most part, located in the
sparsely populated Southwest. Therefore, solar plants would cause
redistribution of population from denser to less dense areas with

associated impacts and benefits,

The orbital power system requires 6680 manhours/MWeyr for
construction and 13.1 manhours/MWeyr for O&M (Ref. 28 with material acqui-
sition activities added). This is double the manpower the ground solar

thermal plants.

6.2,5 Energy Payback Time

Energy requirements like resource requirements, have been
included in the internal dollar costs of the energy system; however, it
is another characteristic of an energy system that can be helpful in d
describing its berefit to society. A long energy payback time means that
implementing a new energy source viéorously would cause an energy drain

on soclety for a long period of time before any net energy is available.

There are several possible ways to define energy payback.
The first is a static approach where the total energy payback time
is the time that a plant must operate to pay back the construction

energy and the operational energy needed over the entire plant life,

Another method is a dynamic approach and assumes an imple~
mentation rate for new power plants. The time it takes to generate net
energy from an increasing host of power plants is calculated; the con~
struction energy is counsidered a debit as is the operational energy
taken from scciety to maintain the associated fuel cycle. Each plant's
net operational energy is applied to paying back the debit energy. This

dynamic analysis could be performed for one or more plants,

Apparently, large differences in material energy intensive-
ness can result depending on where one chooses to set the bourdary of
the problem. In the analysis performed in this report (based on data
from Ref. 7) the operational energy needed to maintain the f[iel supply

extenas back to the extraction process. However, for construction
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materials, the analysis only ihcludes{the energy required at the primary :
material fabrication plant to convert the ores into finished material ‘
stock. The material estimates of Section_6;2.1 are used and combined
with the energy intensiveness of the mate%ials based on an energy model ;

described in Refefence 56.

Since the technologies employed for solar plants, coal
plants, and nuclear plants are vastly-different, one would expect to
find relatively large differences in their construction energy payba_k
time. The energy required to replace the construction energy is shown
in Table 6-5.

In addition, both a coal and nuclear plant require energy
from external power sources to maintain the fuel cycle. A coal plant
requires energy for mining and transporting coal, while a LWR requires
energy to process the uranium ore into an enriched fuel. When the
energy required over the 30 year life of these plants is considered as
a single quantity, the operational energy payback time is ..8 years for
the coal and 1.2 years for the LWR nuclear plant.

Table 6-5. Energy Payback

Energy Payback Time, yrs

Plant Type

Construction Operation(l) Total
LWR 0.2 1.2 1.4 -
Coal 0.1 1.8 1.9
Ground Solar Thermal 1.7 0@_0.18)® 17109
Orbital SPS 1.36 0.04 L4

(l)0ver the 30 year life of the system. |
(Z)Stand—alone solar plant. ;
(3)Hybrid solar baseload plant at load factor = 0.70 and rejuiring :

10Z backup energy. i

OB L J e e s =
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Thus, the total payback energy (construction and operation)

is 1.7 years for a solar, 1.9 for a coal and 1.4 for a nuclear energy

system as shown in Table 6-5. Thus, these different systems are quite

comparable in terms of their energy payback time. The energy payback time

for a satellite solar power system has been estimated to be 1.4 year, and

is due primarily to the rectenna. The payback time would be 1.1 yr. if
steel were substituted for aluminum in the rectenna. The algebraic sum-
ming of the payback energy for construction and operation is a useful

concept, but it neglects the time distribution difference of these two

quantities. The construction energy occurs prior to plant start-up while

fuel cycle energy occurs over the p. nt lifetime,

€.3 HEALTH EFFECTS

The health effects associated with each of the electrical
power systems have been considered in terms of both public health -
effects and occupational health effects. Furthermore, the health

impacts have been broken down into two cétegories: "routine" health

. impacte and "catastrophic' health impacts. An example of a catastrophic

occurrence is a core meltdcwn of a nuclear power plant. The impacts

of more frequent, relatively less severe accidents, such as coal mine
disasters, are included under "routine'" health effects. '"Routine'" in
this sense merely implies that morz deiinitive health impact statistical
data are available.

Health impacts have been examined for the complete energy
cycle shown in Figure 6-2. This is especially important in comparing
such different technologies as fossil fuel power plants and nuclear
power plants with either ground based solar power plants or orbital
power plants. Since stand-alone solar power plants do not use any fuel
other than sunlight, no mining, processing and transportation of the
fuel is required during the operation and maintenance phase. When
hybrid solar operation is used to increase grid reliahility to that of
conventional plantg, then it is neccssary to charge the solar plant with

“about 10% of the health impacts of the backup energy source (see Section

1V). Thus, the fuel related public health and occupational health
impacts of rdnning a solar power plant arez relatively small. However,

solar power plants require about an order of magnitude more macerial to
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construct the plant. Hence, the health impact of the solar power plant
during both the materials acquisition cycle and the construction cycle
may bte larger than that of either the fossil fuel or nuclear power
plants. In order to properly understand the relative hezlth impact of a
given energy system, it is important to compare thec health consequences
of the complete energy cycle for one system with the health consequences
of other systems. The health effects are measured in terms of person
days lost (PDL), and usually stated per unit energy generated; that is,
PDL/MWe-yr. _ '

A problem identification matrix is illustrated in Figure 6- 6
It shows the following areas of eoncern'

tional and public), (2) how they are impacﬁed (accident disease or .
death), and (3) the stages of. fuel cycle.at which these impdcts sccur.

In the case of both- accidents &nd uiseéses, not only is the
incidence of these factors considered but also the severity is consi- -

dered in terms of days lost as§o¢iacedeiﬁ&~a_giVen eategory of accident -

or disease. For example, a scratched fingér may aceount for'a few hours -
of lost time, whereas a severe back injury. may account for years. In

the case of estimating the impact of air pdllﬁtion on puﬁlic health,

an asthma attack is counted ds a one day losé while a chronic respira~
tory disease symptom is counted ag a file-day loss. The total number

of person davs lost due to diseases and accidents that are associated -

with a given enefgy cycle cdan be used as a medsure of the health impagt.

In the case of deeth, a 30-year occupational los; is
assumed; i.e., one death is associated with 6000 PDL (30 years x 200
working days per year). This simplifying transformation is used even
though it can be convincingly argued that deaths and PUL are incommen-
surable parametete. Ceitainly; there is no broad societal consensus
on this natter, Therefore, deaths resulting from an energy system are

also totalled separately from PDL.

, Some deaths are due to air pollution from the use of coal
and are thought to be "premature" deaths. That is, ceaths occurring to
older people with poor respiritory systems who die several 2aye, weeks
or even months before they '.> 'mally would. An accident such as a

~
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nuclear core meltdown would cause deaths to people more likely to be

of average age and health. Thus, if one considers the diffuvrent circum-
stances of age and health of the likely victims of these two public
health hazards, all deaths are not the same in sowme sense. Howeve:,

this difference in types of deaths has not been considered in this s:udy.
The death of a 60~year old person is treated here as fully equivalent

to that of a 20~year old person.

In estimating the health impacts, both routine and cata-
strophic, there is a wide 72uiati in the data and the level of
uncertainty ian the analysis is quite high. The time scale over which
the effects take place is also quite different. For example, the
impacts associated with the oxides of sulfur emitted from a fossil fuel
power system take place over the scale of weeks whereas the potential
impacts associated with the storage of high level radicactive waste

could take place over the scale of hundreds of thousands of years.

Similar vast differences among the electrical power systems
exist with respect to the impacts of possible sabotage. For example,
diversion of many coal cars wouli have very little impact on our society
as a whole; h.wever, the diversion of nuclear fuel and possible later

conversior into weapons could have enormous impact.

Reference 7 modified by more recent information has been
relied upon heavily for the health effects of the conventional power
systems, while JPL studies have developed additional data on the
material acquisition cycle and plant construction for all types of plants
except the SPS (Ref. 45).

6.3.1 Fuel Cycle Health Effects

Five of the sever. stages in the lite of the plant are
related to the fuel cycle. These specific stages are those which track
the fuel cvcle (i.e., harvesting, upgrading, cransporting, generating
electricity and waste disposal). As an c¢xample of the results of this
study, the occupational, routine public ané‘lafgg:accident health
impacts are shown in Figure 6-7 for the refereﬁéé4fossil and nuclear

plants. The range of values for accidents and disease are estimated
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for these two plants; coal is the low BTU gasification with combined

gas and steam turbines, and the nuclear is the light water reactor (LWR).
Deaths are included in the accident or disease category using 6000 PDL/
death as a conversion factor in Figure 6-7. The time frame is a projec-
tion to the year 2000. The estimates are based on historic data and
assume new developments in these industries which could affect health

and safety such as the new mine dust standards. The LWR system estimates,
however, are based on current high ore grades, and no allowance is made
for decreasing ore quality and the increased mining activities which

will be necessary.

The rnutine occupational and public health effects indicate
that coal plants have much greater routine impacts than nuclear plants.
The greater bulk of fuel that is mined for the coal plant compared to
the nuclear plant is clearly evident in Figure 6-7 as occupational acci-
dents. The disease rates due to mining activities are expected to be
lower than current rates due to anticipated implementation of coal mine
dust standards. This will gradually reduce pneumoconiosis (black lung
disease). Routine public impacts are much greater for coal plants than
for the LWR. However, the reference coal plant which gasifies the coal
and burns clean low BTU gas in a combired cycle gas and steam turbine is
considered to remove 99+7 of the SOx from the coal. This is more than a
factor of 10 better than the equivalent value for a coal plant with stack
scrubbers (being implemented today). It is about a factor of 100 better
than the value for uncontrolled coal plants. Since the pubiic health
impacts are proportional to SOx emissions, the reference coal plant is
considered to have 1/10 and 1/100 the public health eifects (at the

power plant) of the stack scrub and uincontrolled coal plant, respectively.

The nuclear public impacts are evident in the large accident
category. This is based primarily on the Rasmussen report (Ref. 57)
modified slightly by recent criticisms (see note 6 in Table 6-6). The
range of uncertainty is quite large (3 orders of magnitude). 1In addition, .
many effects have not been taken into account including non-fatal
diseases, genecic effects of radiation, accidents due to sabotage or

diversion of nuclear meterials, and accidents at other parts of the
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Table 6~6. Comparison of Coal, Nuclear and Solar Fuel
Cycle Health Impacts

Person Days Lost/MWe-yr

Solar
Impact Area Coal(1) LWR
Stand-alone Hybrid

Occupational
- Accidents‘?) 18-57 1.2-2.7 ? 3.2(3)
- Disease 0.03-0.4 0.2-1.0 - 0.01
Public Routine
- Accidents(z) 4.5 0.08 - 0.45
- Disease (4*?) 0.2-138  0.5-1.1 - 0.5
Public Large Accidents(2’6) 0.003-10.8(7) - -

Total 23-200 2-15.6 ? 4.4
Total Deaths/MWeyr x 102 0.34-2.5 0.03-0.23 - 0.09

?

1
2

3

Small, but unknown at this time.

Low BTU gasification with combined cycle.

6000 PDL/death, 50 PDL/injury, and 100 PDL/carcer, except for uranium
miners and accidents, whole body exposure only ls considered.

Based on requiring 107 coal energy for extra backup margin to meet
baseload plant reliability. Geometric average of coal range used.
Coal derived public disease fiom SOx and particulates o~ly at power
plant, Nuclear and coal long-term wastes ignored.

Coal system produces mainly air pollution effects {premature deaths
and aggravation of heart and lung conditioms). If remote siting and/
or very strict controls are implemented, coal train accidents become
dominant. Nuclear system effects are mainly cancers which would occur
after a decade or more.

Nuclear deaths based on NRC's WASH-1400 (Rasmussen report). Modifi-
cations as follows: Latent cancers included along with early fatali-
ties. Factor of 23 times per year for 30 yrs. Dose response cisk is
twice that used and applies to latent cancers (BEIR report of National
Academy of Science). Variation of 1/2 to 2x for impact at different
sites. Uncertainty in WASH 1400 is from 1/30 to 15, These modifica-
tions to the WASH 1400 report increase the range from 1/35 1o 42000.
See EPA (1976), Yellin (1976), Von Hippel (1976), and Biological Effects
of lonizing Radiation, National Academy of 3ciences, 1972.

Does not include genetic effects, non-fatal illness, sabotage, naterial
diversion, and other reactor accidents.
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fuel cycle. These factors must be considered t. “her with ti=
unquantified but important differences in the publi s perception of
different kinds of risk, and they will affect the marg. between clean
coal and LWRs. These results are summed up for the 5 fue related stages

and shown in the first two columns of Table 6-6.

The public health impacts of the operation and maintenance
phase for both the stand-alone ground solar thermal power systen and
the ground solar photovoltaic power system will be quite small compared
to any of the conventional electrical power gystems. These systems
are not characterized by air emissions othér than those that come from
the evaporative cooling towers if they are.bééd. Liquid-wastes will be
associated with these systems; however, the.health effects of these
wastes are thought to be very small compare&.to the health impacts
associated with the air pollutants of coal systems. In addition, the
occupational health impacts during operation and maintenance are felt

to be negligible and are not quantitatively evaluated.

Major fuel cyrle related health impacts of a fossil hybrid
solar plant do not come from the solar plan. itself. Rather, they
derive from the extra utility grid backup margin that is required to
increase the solar plant reliability to that of non-weather dependent
power plants., The magnitude of this extra backup margin energy for a
baseload solar plant (0.7 load factor) was shown in Figure 4-8~ to be 10%
of the rated energy requirement. 1f the extra backup margin is based
on coal, then the solar baseload plant will produce about 10% of the
health impacts of a coal system. It is unlikely that a nuclear plant
will be used for a solar plant backup since a nuclear plant is unsuit-
able for this use. It is mére likely that o:1 or gas would be used
for peaking backup. These fuels will tend to be unavailable toward the
end of the ceatury. Therefore, the extra backup margin is based on
using coal in a manner similar to the reference coal plant. The coal
is gasified to low BTU gas and burned in an auxiliary boiler using the
existing solar plant turbine-generator equipment for energy conversion,
The solar plant fuel cycle health effects are compared to those of the

reference coal and nuclear plants in Table 6-~6.
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This data for the health impacts of the eight conventional
energy systems can be more easily visualized by using the health effects
flow diagram. Appendix B displays this graphic representation of the

five stages in the fuel cycle showing disease, deaths and accidents.

A broad interpretation of these results could be tnan even a
relatively clean coal plant has fuel cycle health effects that cuase
roughly 100 PDL/MWe-yr, while the effects calculated for a LWR nuclear
plant would on the average cause about 10 PDL/MWe-yr. The solar plant
as a stand-alone plaut has almost no fuel cycle health hazard. However,
when the extra backup margin is considered, then the solar plant has
some fuel cycle health effects. Using coal as the backup system, the
health effects of the solar plant are estimated to be approximately
5 PDL/MWe-yr and could vary from zero to 9 PDL/MWe-yr, this is similar
to the average health effects of nuclear systems, but is essentially one

order of magnitude less than the coal plant.

6.3.2 Material Acquisition and Construction Health Impacts

The two remaining stages of possible health impacts shown in

Figure 6-6 are the acquisition of construction materials and plant
construction. Due to the much greater material consumpticu of ground
solar plants, consideration should be given to public and occupational
health effects which are a result of these activities. The public
health effects are derived primarily from the pollutants which are
generated when the basic material is formed in the steel, aluminum,
glass, etc., plants., However, the majority of the health impacts are
occupational and occur mainly in two stages: (1) the material acquisi-
tion stage which combines the construction material ore mining &nd the
primary material forming plant, and (2) the actual construction of the

power plant.

6.3.2.1 Public Health Impacts. In a manner similar to that used to

estimate coal plant public health effects (Ref. 7), only the SOx-

par. iculate effluent is used to calculate values for public disease and
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death. Using the material requirements displayed in Section 6.2, the
SOx emissions are calculated from the production of steel, aluminun,

concrete, glass and mechanical components (Ref. 45).

Two cases were considered. 1In the first, the primary
material production plants were assumed to be in remote sites; the
second case assumes that the production plants are in an urban area
with a population of 11.5 million people. The results of these two
cases are 0.5 to 1.5 PDL/MWe-yr for thermal power plants and 0.02 PDL/
MWe-yr for the photovoltaic power plant (Ref. 45). These types of
public health impacts for conventional plants are negligible since so
much less material is in ~lved. The data for the orbital solar plant

is not available at this time.

6.3.2.2 Occupational Health Effects. These effects are computed

for the acquisition of materials (mining and primary material fabrica-
tion), and power plant construction. Federal and California occupational
accident, illness and death statistics were used for 15 different
industries that would contribute to a power plant. Coal mining needed

for steel production (Ref. 45) was also included.

The results are shown in Table 6-~7 where death, illness and
accidents are shown for the material acquisition and construction phases
for four power plants. The conventional coal and nuclear plants have
a relatively small contribution to their health impacts in these two
stages (1 to 2 PDL/MWe~yr). Ground photovoltaic has nearly 3 PDL/MWe-yr
due to greater material requirements than conventional plants. The
ground solar thermal has nearly 6 PDL/MWe-yr due to its larger material
requirements. Thus, the greater m.terial content of the solar thermal
plant has translated itself into a several times greater health impact

during the material acquisition and construction stages.

The health impacts of all seven stages shown in Figure 6-6

have been combined and the results are presented in Table 6-8.
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6.3.3 Limitations of the Health Impacts Data

The solar plant health effects can be determined with the
most certainty since they are based on industrial statistics of acci-
dents, illness and death primarily. However, the attempt to use data
from many related industries may or may not prove to be an accurate
estimate of solar plant occupational health impacts. There may be
differences between a solar plant construction and other industries that
are not ap, vent in this initial analysis. The solar thermal material
and health effects may be as little as 1/4 those quoted due to variations
in the design of the heliostat.

The new mine dust standards (Ref. 58) should essentially
eliminate health hazards due to mining related disease, in addition,
the reference coal plant will have reduced public hazard at the plant so
that it is on a par with other stages in the fuel cycle. However, the
data base for public health effects due to SOx—particulate is controver-
sial and may prove to be in error by factors. In addition, there is the

currently uaknown effects of other effluents such as CO, NOx, etc.

The LWR health effects are due to the public impacts of
nuclear power plant accidents, public radiation exposure from fuel cycle
operation, and occupational impacts from mining and plant construction
(Ref. T). Power plant accidents are low probability-high damage events
that could result in more than 100,000 people uead (Ref., 7). This has
been converted to an average impact using the Rasmussen probability
study with some modification (see note 8 of Table 6-8). 1In addition,
the Rasmussen report does not consider a number of possibilities which
are very real such as sabotage, terrorism or blackmail related activi-
ties at the plant or with diverted material in the form of a nuclear
device. In this event genetic effects and non-fatal illness are not

considered.

The quantity PDL/MWe-yr has an ellusive quality to it and
an attempt has been made to translate it to a personal health impact
basis. The magnitude of this parameter varies from 3 to 200 PDL/MWe-yr
for the piants considered., Using the average national per capita con-

sumption of energy, the number of hours per year someone is indisposed
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(sick, recovering from an accident, etc.) for each year's worth of
electricity consumed was determined. This quantity is called person
hours lost per person year of electricity use (PHL/person-year).
Although 12 kW (thermal) is consumed on a continuous per capita basis
for all energy uses in society (US), the continuous electrical consump-
tion is onlv 1 kWe. This transiates to 0.001 MWe-yr of electric energy
each year for each person (MWe-yr/person-yr). The range of health
impacts which is 3 to 200 PDL/MWe-yr thus becomes 0.08 to 5.2 PHL/
person-yr. Thus, up to 5.2 hours of being indisposed by one or more
people can be caused by one year's worth of electricity for the average
person in the United States, based on a clean coal plant operating in
the year 2000. This 5.2 hrs is spread over several persons in both the
occupational and public section, and there is certainly no uniform

distribution of these health effects.

6.3.4 SPS dealth Effects

Since the health effects of orbital photovoitaic power plants
were not evaluated in the SPS source references (Ref. 23,30), there is
no quantitative data available at this time. It is possible to identify
several potential problem areas for the SPS. Occupational health effects
will exist due to industrial accidents during material acquisition,
launch operations, space construction and operation as well as rectenna
construction and operation. In addition to typical industrial accidents,
there is the potential that several unique occupational hazards exist
with the SPS due to extra vehicular activity in space, SPS space charge,*
the natural radiation environment {n geosynchronous oibit, the micro-
wave radiation environment near the transmitter, and possibly even near

the receiver on the ground.

SPS impacts on public health may occur through: (a) effects
on the atmosphere, magnetosphere, and space plasma environment due to
emissions by SPS launch vehicles, orbit transfer vehicles and on-orbit
mobility elemenss; (b) biological/ecolozical effects at the rectenna
site, nationally and globally due to microwave radiation; (c) noise and
vibration effects of heavy-lift vehicle launch and recovery and (d)

possible effects of a launch abort. Basic data on these effects are

*Large voltage differences (=20 kv) will exist between the &IPS and the
magnetosphere at certain times of the day.
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required. Data on public health impacts due to such effects must then
be developed so that the SPS energy system can be understood as well

as the terrestrial systems to which it is compared.

A number of these potential health impacts are presently
being evaluated at JPL and preliminary results should be available by
the fall of 1977.

5.4 ENVIRONMENTAL IMPACTS

Each of the electric power generating systems is character-
ized by a variety of different land uses and water requirements (both
total water requirements and consumptive water requirements). These
data have been compiled and were presented in Section 6.2 on resource
utilization. Each system is 2lso characterized bty environmental
residuals such as air emissions, water pollutant effluents, and solid
wastes for each step of the complete energy cycle. These envircnmental
residuals can have a variety of impacts on human, plant aud animal life,
in addition to strong aesthetic impacts on the land, rivers and seas,
and the atmosphere. Data for these environmental residuals are tabu-
lated (Ref. 7) for the conventional fossil and nuclear plants for each
stage in the fuel cycle. However, the operation and fuel cycle of a
stand-alone solar plant has relatively low environmental impacts. This
is especially true if dry cooling towers are used which is most likely
after the year 2000. The environmental impacts due to air, water and
solid wastes come from the materials used to make a solar plant.
Impacts would include contiibutions from the mining, transportation of
material, manufacturing and final construction of the solar plant
(Ref. 45).

Table 6-9 lists the water, air and solid pollution data for

the candidate terrestrial power systems. For the most part, these are

expressed in metric tons/MWe-yr. The solar plants have almost no environ-

mental pollutants with the exception of a modest amount of particulates

from aluminum and concrete production.

The coal system produces large quantities of pollutants;

the most significant are the acid, solids, particulates, NGx and sox.
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Table 6-9.

(tons/MWe yr)

(2)

Environmental impacts of Central Power Plants

(1)

Ground Solar

Type of Pollutant Co:l SEack g;;izar
Thermal Photovoltaic cru b
Water Pollutants
COD (Chemical Oxygen - 1.2 N.D.(3) N.D
Demand )
Other Dissolved Solids - 0.5 N.D, N.D.
Organic Substances - 0.2 N.D. N.D.
Acid - - 660-55,000 -
Suspended Coal - - 0-8 -
Sludge - - 1.6-5.4 -
Non-radiocactive - - - 260-4230
Radioactive (curies/MWeyr) - - - 0.1-4.5
Air Pollutants
Particulates 5.7 11.2 4.8-44.9 -
NO, 1.0 - 14,3-28.4  0.45
SO - - 12,1-41.9 1.2
Hyﬁrocarbons - - 0.8 -
co 0.2 - 0.6-2.4 -
Aldehydes - 0.2 - -
Toxic Metuls - - 0.02 -
Radioactive (curies/MWeyr) - - - 4,7-600
Solid Pollutants
Non-radioactive - - 1875-2316 105,000
Radioactive - - - -
Hign Level (liters/MWeyr) - - - 43-48
Low Level (liters/MWeyr) - - - 1530
Intermedicte Level - - - 30.7
(liters/MWeyr)
Buried Solids (m3/MWeyr) - - - 0.24
Tailings (curies/MWeyr) - - - 0.01-0.02

(1) No data available on SPS.

(2) No entry if less than 0.1 ton/MWeyr.

(3) N.D. = no data.

w——
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The coal gasification type plant would reduce the SOx by an ordei of
magnitude compared to the stack scrub system shown in Table 6-¢. The
nuclear plant (LWR-Pu) has modest water pollutants, and modest low level

radioactive solid wastes (1530 liters/MWe-yr).

The hybrid solar thermal power plant should be charged for
the pollution caused by the extra backup margin from a non-solar source.
For baseload operation, at 0.7 annual average load factor, the solar
plant is estimated to require about 10% backup energy (see Section 6.3
for a more complete d.scussion). Assuming that either coal or a coal
derived liquid or gas fuel will supply the backup energy source, then
the solar plant should be charged with 10% of the environmental impact
of tue coal system shown in Table 6-9. Thus, a hybrid solar plant

incurs only one tenth of the environmental impacts of a coal system.

In addition to air pollutants, water pollutants and solid
wastes, waste heat is another environmental impact characteristic of
all power plants. Rather than just calculating the waste heat from a
plant, it is more appropriate to identify the excess waste heat. The
excess waste heat is that heat released at the plant that is in excess
of what would have been released if the plant were not there. For coal
and nuclear,‘all the heat rejected at the plant is excess waste heat as
It is for the SPS at the ground rectenna and .in the atmosphere due to
the microwave beam losses. However, the ground solar thermal and
photovoltaics plants are using solar energy that normally would strike
the ground and heat the area to a certain extent. Some of the sunlighbt
is "bounced" (reflected) off the ground and sent back up into the sky,
while the remainder is absorbed by the ground. Part of this absorbed
erergy heats the ground and surrounding alr, while the rest radiates
to the surrounding environment at a longer wavelength than sunlight.
Under certain conditions, it is possible for a ground solar plant to
produce no excess waste heat. For instance, if the col“ectcr field has
the appropriate efficiency and surface properties, it can act in a
similar manner to the undisturled ground before the plant was built.
That is, it can reflect solar energy and also remove energy via electri-
city in an amount that is equal to the solar energy that was originally

"bounced'" off the undisturbed ground before the btuilding of the solar
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plant. Under these conditions, the amcunt of energy ronaining due to
the various inefficiencies of the power plant would be the sene magni-
tude as that originally absorbed by the incoming solar energy. Also,
it is possible to control the surface properties of the collector
structure or rectenna structure to minimize or even eliminate excess

waste heat on the biosphera.

I1f it is assumed (1) that the alleuo (energy reflected
from » curface compared to the incident energy) of soiis typical to the
Southwest is 0,30, (2) that the solar thermal plant has an zverage
efficiency of 0.20, and (3) that the colilector mirrors use front surface
glass with a reflectivity of 92%, then the solar thermal plant rejects
only somewhat more energy than the undisturbed ground. The amovnt of
excess waste heat rejected per unit electrical energy generated for

various power plants is shown below:

Type Plant MWt-yr/MWe-yr
Coal (Gasification) 1.7
Nuclear (LWR) 2.1
Solar
Thermal 0.25
Ground Photovoltaic 1.5
Orbital Photovoltaic 0.25

The LWR is considered to have 327% plant efficiency, wbile the coal

plant has a 37% efficiency (coal to electricity). Potentially, the

low BTU gasification and combined cycle plant could have efiiciencies

as high as 45% if technologies for gasification and high temperature
turbines improve as planned. The ground photovoltaic plant is considered
to have a 137% module efficiency and has a cover glass over the nhoto-
voltaics., The orbital photovoltaics rejects energy tu the environment

at the receiving antenna (rectenna), from the ground around the

rectenne due to wmicrowave energy that m’ sed, and some energy is

absorbed from the microwave beam in the atmosphere above the ground. *

6-43

2



As can be seen in the table above, the solar thermal and
orbital photovoltaics reduce the excess heat burden in the biosphere
by nearly an order of magnitude compared to conventional nuclear or

fossil power plants.

Besides waste heat, the exact SPS environmental impacts are
unknown at this time. Several areas require investigation. These are:
vehicle emissions; interaction of the microwave beam with the magneto-
sphere, ionosphere and atmosphere; biological/ecological effects of the

microwave beam; and noise from vehicle launch and recovery operations.

A number of other environmental issues are considered in

the next section.

6.5 OTHER SOCIAL IMPACTS

Throughout Section VI, the social costs for various central
power plants has been quantitativelv evaluated in the areas of RD&D
expenses, resource utilization, and health and envircnmental residuals.
There are aspects of these parameters that cause social impacts that
do not lend themselves to quantitative evaluation, or if they do, the
meaning of the numbers is very difficult 1o determine. These impacts
are called "other" social impacts. For example, it is difficult to
know the social cost of an event which presents a low average health
impact because of its low probability of occurring, bhut has catastrophic

effacts if it does occur (e.g., core meltdown of a nuclear plant).

Society's acceptance of catastrophic events where it has
little or no control over the event is lower than its tolerance of
more frequer.t but low impact events that it may have some direct control
over. The question is, how great is the differeunce in public perceptions
and how will this difference be translated into social cost. It may be
that a large nuclear incident would be unacceptable to the public and
would shut down the nuclear industry for months and possibly years.
Such an impact would have the characteristics of temporarily disrupting

the supply of a domestic source of energy.
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Characteristics such as discussed above do not lend
themselves easily to quantitative evaluation and thus have been included
in this secticn on "other" social impacts. Other examples are COZ’
waste heat, and particulate generation. In these cases, reasonably
precise numbers can be generated for the quantity of pollutants, yet it
is difficult at this time to interpret the erfect these pollutants
would have on climate which could have environmental and human health

impacts sometime in the future.

To deal to some extent with these types of characteristics
of electric power systems, a rather simple comparative evaluation is
proposed. Social cost areas of this type were identified and a rating
of low (L), medium (M), high (H) and very high (V) was given for each
type of central electric power system. Such ratings are only an indi-
cation of the relative magnitude of the social impact of a particular
impact area. The ratings are shown in Table 6-10, and a definition of

each impact is given below.

(1) Sabotage, Blackmail, Terrorism. Sabotage is an act

which destroys property or causes equipment to destroy
itself. Blackmail is using sabotage or threats of
sabotage, exposure, disclosure of confidential infor-
mation, etc. to obtain money, other property, political
favors, etc. Terrorism could be the motivation for
acts of destruction for political or other ideological

purposes. anarchy or madness.

(2) Material Diversion to Weapons. The act of using

material, such as Pu-239, to make weapons by either

governments or terrorist groups.

(3) Catastrophic Impact of an Accident. Catastrophic

impact is a great calamity or destructive event,
whether it 1s measured in enormous loss ot life,
disease or bodily injury, property damage, environ-

mental damage, etc.
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Table 6-10. Summary of Relative Potential cf "Other"
Social Costs

Solar

Area Fossil Nuclear Ground
Orbital
Coal 0il LWR LWR~Pu LMFBR HTGR } Thermal Photo Photo

Sabotage, Blackmail - L H v v H - - M
Material Diversion - - H v v. H - - ?
to weapon
Catastrophic impact L L H v v H - ~ ?
of above or accident
Duration of impact - L v v v v - -
Military Vulnerability - v - - - - - -
CO, and particulate h H - - - - - - -
emisuions
Acid rain H H - - - - - - -
¥et thermal emission H H v L H L
Long Term Toxic Waste - - v v v v - - -
Microwave - - - - - - - - ?
Magnetospheric, - - - - - - - - ?
Ionospheric and
Stratospheric
Noise - - ~ - - - - - H
Life Cycle Mass v v L L L L M M ?
Utilization .
Non-Renewable v v v H L M L L L
Resource Use :
Land Use
® Area H M L L L L
® Area x Time L L v v v
Local Disruption
@ Construction H M M H M M H H H
® Operation H M L L L L
Interference
o Communications - - - - - - - - ?
@ Radio Astronomy - - - - - - - - 7
Aesthetic Impact H L - -, - - M H ?
Legal, Liability - - H H H H - - H
Key: L = Low ‘ H = High - = Nil or Little
M = Medium V = Very High
ORIGINAL PAGE 1S 6mis
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(4)

(5)

(6)

N

(8)

9

(10)

Duration of Impact. Duration of impact is the length

of iime the effects will last. Each type of problem
is different, in the case of fossil fuel it could be
only months or a2 few years but with nuclear power

plants, it could be a matter of thousands of years.

Military Vulnerability. Susceptibility of a power

plant to destruction or curtailment of its operation
by a foreign nation or subgroup. Examples would be
a) oil embargces, b) aggressive action against a
power station or action against enrichment plants, or
c) potential for giving the appearance of accidental
destruction of an orbital power plant by an orbital

collision.

CO,-Particulate Emissions. These are expected

emissions from any fossil fuel power plants; both of

these could have profound effects on global climates.

Acid Rain. Acid rain comes mainly from the 802 emis—~

sions of a power plant vhen the SO2 contacts water
vapor and changes iInt. sulfuric acid (HZSOA) and
sulfurous acid (H2503). This acid will then rain
onto the property downwind from the plant and cause

environmental and crop damage (Ref. 59).

Excess Thermal Energy Emi.ted. . 3ecause the power

plant is a heat source, the excess thermal energy is
that he:i that the power plant emits greater than what
would normally be rejected to the atmosphere if the
plant were not there. This has the potential of long-

term climate change.

Long~Term Toxic Waste., Wastes that can procduce human

health or environmental impacts for long-term time

period; e.g., radioactive wastes.

Microwave Radiation. A comparatively short electro-

magnetic wave which has the potential to cause human
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11)

(12)

(13)

(14)

(15)

(16)

impacts, terrestrial and atmospheric environmental

impacts.

Magretosphere, Ionosphere and Stratosphere Impacts.

The magnetosphere is a region of the upper atmosphere
that surrounds the earth, extends out for thousands
of miles, and is influenced by the earth's magnetic
field so that charged particles are trapped in “t.
The ionosphere is a section of the atmosphere that
contains a large number of free electrons extending
from about 80 km to about 300 km. The stratosphere
is a region of the atmosphere of nearly constant
temperature about the lowest region of atmosphere,
between the surface and 20 km. Due to pollutants or
microwaves, environmental impacts may be caused in

these regions.

Noise. Undesirable sound that can have human health
effects. This sound can be from turbines, boilers
and cooling towers and from SPS vehicle launch and

recovery.

Life Cycle Mass Utilization. This is the amount of

material used over all the phases in the life of the

plant.

Non-Renewable Resource Use. This is the use of a

resource that cannot be replaced; e.g., a fuel such

as coal or uranium.

Land Lse. Area: land used by an electrical power
gerarating system over its entire fuel cycle and con-
struction material acquisition cycle. Area x Time:
the product of the area and the time this land will

be used.

Local Disruption. Boom-bust cycle disruption on local

and regional social fabric during construction, and has
impact on economic, social services, crime and quality

of .ife in general.
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(17) _Operation. The impact during the plant operation
phase over a much longer time period (330 vears) which
will create permanent jobs and economic stimulation
and increased development. Adverse irpacts could
include over-developments, increased population,

overuse of limited recreation.

(18) Interference. Communication confusion of received
radio signals due to noise created by microwave beam

from power stations, or from transmission lines.

(19) Radio Astronomy Interference. Limiting or destroying

ability to do earth based radio astronomy.

(20) Aesthetic Impact. This is an indication of how much

the power plant, minec, transmission lines, etc.,
change the natural appearance of the land area or sky

view.

(21) Llegal-Liability. There could be legal difficulties

due to regulation, international law, etc., or
liability difficulties when there is the potential

for damage and insurance coverage is a problem.

Table 6-10 indicates the rating given each plant in eazh of
these areas. The first four areas, which have to do with sabotage,
material diversion to weapons, catastrophic impacts and duration of
impacts, mainly affect nuclear power plants. The ratings are either
high or very high. For nuclear plants, much speculaticn on these dangers
is available publicly.

The only other entries of note in these categories of Table 6-10

are those associated with the orbital power satellite and are based on its
unique characteristics. It has sabotage and blackmail potential which
could result in plant destruction with economic and power shortage
effects. The SPS also has military vulnerability and military potential
that could result in possible retaliation by the owner nation or nations.
This possibility may necessitate international cooperation in designing,

building and operating and owning an SPS.
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The SPS also has a potential for major impact due to launch
aborts where a large vehicle (perhaps 3 times the Saturn V) unintention-
ally impacts a populated area. Further study would have to examine these

SPS related areas.

The oil system is very susceptable to interruption militarily

and will be increasingly so until the resource depletes early next century.

The next category of other impacts is CO_-particulate emis-

sions and acid rain which are residuals oi fossil plﬁnts. The particu-
lates and acid rain can be controlled to some extent. They will be
reduced in the reference coal plant since about 99% of the sulfur is
removed, and a gas is burned in the power plant. The effect of CO2 and
particulates on global climate is difficult to asses, as is the effect

of acid rain on human health and vegetation.

Thermal emission effects are a characteristic of all energy
systems and the magnitude of excess waste heat was indicated in
Section 6.4. Even the generated electrical energy should be included
along with the excess waste heat, since it eventually becomes heat.
Power plant heat islands, or increased moisture if wet cooling towers
are used, will have some impact on local climate. The magnitude and
nature of the impact are very site specific. In general, power plants
used to sustain human activities contribute to the global heat burden.
With continued growth, this heat burden could reach a significaat
fraction of global solar input in several centuries with profound global
effects. Apprcximately 0.01 of global solar input could be reached by
2070 at 5% grow:h of energy use (Ref. 60). The LWR system produces the
most net thermai emission since it is least efficient. Fossil, advanced
reactors (LMFBR, HIGR) and ground photovoltaics have less excess heat
emissions which are an order of magnitude less than the LWR system.
Although the relative magnitudes were shown earlier the long-term climate

effects are unknown.

Long term toxlic waste 1s a problem of nuclear systems; some
waste products have to be confined outside the biosphere for more than
100,000 years if they are not transmutated to substances with shorter
half lives. The length of time and the toxicity of the wastes in cer-

tain forms contribute to the social impacts.
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The effects of microwave radiaticn on the upper atmosphere
are limited solely to the orbital power system (SPS); these effects and
their impacts on the environment, flora and fauna, and public attitudes

toward SPS are currently unknown and require investigation.

The transportation system for the SPS will introduce pollu-
tants at every level in the atmosphere, ionisphere and even the magneto-
sphere. The nature and magnitude of these effects are unknown at this

time and require investigation.

Noise potential is associated with launch and recovery of
SPS heavy lift launch vehicles (HLLV). Noise levels, launch frequency
and types of vehicles and the number and location of sites for launch
and recovery are currently unknown. Study is required to provide a

basis for design to minimize the noise potential.

Table 6-10 also indicates that life cycle mass utilization,
including fuel and construction materials, are greatest for fossil
systems. It has medium impact for ground solar systems while nuclear

systems have low impacts.

The use of nonrenewable resources is greatest for fossil and
LWR systems. The breeder reactor would have low impacts at high breed-
ing ratios as would solar plants since most of the materials can be
recycled. Depriving future generations of nonrenewable fuels is a
difficulc impact to assess. Another nonrenewable resource is geo-
synchronous orbit locations. Many satellites now and many mcre in the
future will use this very attractive location for communications, earth
survey and other possible applications. This is a limited resource and
there would be competition f{or varied uses. This space is presently
controlled by international bodies an. their permission would be
necessary for SPS use. Communications frequency is also a limited
commodicy. The SPS will use only one frequency but may spill over into
a host of other frequencies and produce radio frequency interference
(PFI).

The product of time multiplied by the land area used results
in a reversal of the land use impacts of all the systems. This factor
introduces the diftficulty of considering the time distribution of impacts.
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The next categery of "other" social costs in Table 6-10 is
local disruption during the construction phase; it ic potentially large
for ground solar systems due to the greater material and land require-
ments. There are similar potential impacts for SFS system due to
rectenna and launch complex construction. The local disruption of the
coal and nuclear plant construction is probably lower than the solar
systems due to lower materiai and land requirements. Continued coal

mining would sustain high impacts during operation.

The communications and ratio astronomy interference by the
microwave subsystem of the SPS is unknown at this time. There would
also be some optical asironomy interference from an SPS since it would

be in a stationary orbit in relation to the ground.

The aesthetic impact of coal mining is high while there may
be mixed response to the night visibility of the SPS against the back-
ground star field. The large area ground solar plants would change the
appearance of large sections of the Southwest areas. Nuclear plants
are compact and clean looking and should have liitle adverse visual

impact.

The last category in Table 6-17 is the legal-liability area,
For the SPS commercial rights in space, as well as use of the limited
resource of a synchronous orbit position will require resolution. Com-
munications frequencies, and perhaps international agreements on weapon
systems in space will have to be addressed. There are legal and regula-
tory aspects of a power system that is multi-state in natur: since the

SPS could transmit to different ra2ctennas.

The liability area may become an increasing difficulty for
nuclear systems due to the large potential damage from LWR cure melt-
down or LMFBR nuclear explosions which are not contained. For public
acceptance and low liability, radio frequency interference (RFI) due to
the SPS microwave beam will have to be demonstrated to be within accep-
table limits. Launch accidents with large potential loss of life may
cause problems for the SPS similar to the nuclear plants and require

study.
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This preliminary compilation of "other" social costs is
useful only in identifying some issues which could have a very strong
bearing on the social acceptability of these power systems. A more
careful development of these and other social costs is necessary and

should be the subject of future work.
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APPENDIX A

ECONOMIC METHODOLOGY

The equation used to calculate the present value (PV) is:

. N

l+¢g [ 1+¢g

= P . o —x
PV (1+gx) X°<k'gx>|_l <1+k>]

if k # 8,
P
PV = (1 +
Vx (1 gx) on
if k = 8y
where
g, = escalation rate for a particular recurring cost area
P= ¥~ Yp
Yeo = first yvear of commercial operation
yp = year that goods are priced
X = cash flow in y _ year in y_ dollars
o co P

k = average after tax cost of capital

N = plant lifetime
(1)

This lumped present value is then annualized the same way the initial
capital outlay is annualized by using a capital recovery factor (CRF).
This is a function only of the discount rate aud years of operation as

shown below:

k

CRF = — St
1-(1+k)

lAnnualized Cost - The annuity or uniform si{ream of annual payments over
the system lifetime, which has the same preseat value as the totality
of all system resultant costs.



Thus, this 1s not a first year of operation ernergy cost
calculation. Rather, it is the weighted average cost of energy over the
life of the plant. This 1s important when comparing different plants
especially one that is capital intensive (such as a solar or nuclear
plant) to one that is much less so (such as coal or oil). The escala-
tions that occur over the ﬁlant life are considered, and a more accurate

assessment is made of the real cost of energy from the plant.

The constant annual payment (reassessed in base year dollars)

due to borrowed capital, taxes, "other taxes'" and insurance is

—_— i - ——
Accapital =(1+g) FCR - CI

where

rate of inflation

(-]
[

d= Yoo = ¥
Yy = the base yesr for constant dollars

CI = present value of capital expenditures
FCR is the annualized fixed charge rate an.

1 T
FCR = =7 (CRF - ) + B, + B,

where

-
"

effective income tax rate

annual "other taxes" as fraction of CI

By
)

annual insurance premiums as fraction of CI

The cost of capital k, is computed as

D 4 P
k= -k T+ 7k g

Amjg”sﬂ/
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where
k, = annual rate of return on debt
k = annual rate of return on common stock
k_ = annual rate of return on preferred stock
D/V = ratio of debt to total capitalization

ratio of common stock to total capitalization

(2]

~

<
]

P/V = ratio of preferred stock to total capitalization

Therefore, the total annual payment is

A=(1+g) 9Tk - cI + CrP (PV_ + BV_+ PV))

where
PVo = present value of recurrent operational recurring costs
Pvm = present value of recurrent maintenance recurring costs

PVf = present value of recurrent fuel recurring costs

The energy cost is

— AC
EC = 57 8760° mills/kWehr
where
P = rated power, MWe
L = average annual load factor (actual generated energy/
8760 x rated power)
Refer to Refereuce 2 for a full treatment of this economic
methodology.



APPENDIX B

HEALTH EFFECTS FLOW DIAGRAMS

In order to increase the ease with which one can ac1uire an
understanding of both the overall health impacts cf a given fuel cycle,
and also the relative contributions of each component of the fuel cycle,
a new "Health Effects Flcw Diagram' was designed. This diagram depicts
the health jmpact parameters (death, accident or disease) of a particular
fuel cycle siuge as a set of tubes coming from that stage. The stages are
fuel harvesting, upgrading, transporting, conve sion to electr'city and
final wastes and is besac on the ¢ ta in Reference 7. The width of a given
tube is proportional to the mpact of that stage. In Figure B-1, the -cci-
dent tubes are cross batched, and the death tubes are simply ieft unmarked.

In subsequent figures, the tubes representing disease impact are speckled.

The health impact of a given fuel cycle step, for example
harvesting, will vary considerably depending on the particular technol-
ogy used to extract the fuel, the relative degree of safety consrious-
ness of the corporation, the training of the miners, etc. Two _ubes"
are shown for the heaith impact of each step of the fuel cycle; the inner
tube indicates a numerical estimate of the ''reasonable" 1cuer limits for
a given health impact parameter. The outer tube is a numerical estimate
of the "reasonable" upper limit of health impact for a particular fuel
cycle step. An illustration of the annual death and acciden. impact of
the transportation phase of the fuel cycle for a 1,000 megawatt electri-
cal coal fired elecitrical power system is shown in Figure B-1l. This
figure indi. -es a lower estimate of 2.3 deaths per year due to the
transport of fuel and an upper estimate of 5.7 deaths per year due to
the transport of fuel. Also shown is an upper estimate of 5,120 person
days lost (PDL) per year due to accidents during transport ci the coal.
A low:r estimate of 520 person days lost due to accidents during trans-
port is also shown. This approach provides a highly visible display of
the area health impacts of a given phase of the fuel cycle.

In order to understand the health impicts of 4 complete fuel
cycle, it is important not only to understand the impact of each phase

of the fuel cycle as shown in Figure B-1, but also to understand the
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overall impacts of a given fuel cycle. In order to do this, the -uhes
for a given health parameter from each process pliase are combined to
display the cumulative impact of the process steps. This is analogous
to the width of a river increasing as tributaries flow into it. As an
example of this technique, the annual deaths associated with a single
1,000 megawatt coal fired electrical power system with lime flue-gas
desulphurization are shown in Figure B-2. The harvesting step shows
0.8 deaths per year as the lower limit, and 2.3 deaths per year as the
vpper limit. These deaths include the impacts of mine cave-ins, explo-
sions, and other catastrophic mine accidents, as well as the deaths due
ce black lung disease; i.e., pneumoconiosis. The death impact of the
upgrading of the coal (that is, the crushing and cleaning of the coal)
varies from 0.02 deaths per year to 0.04 deaths per year. Its impact is

considerable smaller than that of the harvesting step.

In transporting the coal to the power plants, deaths occur
due to accidents and involve not only workers but also the public. Colli-
sions at rail-crossings between autos and coal trains are included in

this category.

The deaths associated with the conversion to electricity
step (i.e., burning of coal to produce electrical power) varies from a
lower estimates of two deaths per year to an upper estimate of thirty-
six deaths per year. The lower limits are obtained by assumming that
the power plant is located at a remote site that is more than 50 miles
away from an urban center, that the flue gas scrubber removes 90% of the
SOZ’ and that the least case estimates of the health effects of SOx are
used. The upper limits combined the assumptions that the power plant is
located in an urban site which has a regional population of approximately
50 million people, such as the New York, New Jersey, Connecticut area,
that the flue gas scrubber removes 80% of the SO2 and that the worst case
1imits of the health effects of SOx are used. Similarly, the impact of
the air pollution from the final waste (burning coal mine tailing banks)
is estimated to range from 0 deaths per year to 13 deaths per year. The
death streams from each phase of the fuel cycle flow into the upper hori-
zontal stream which shows the cumulative death impact of this system for
each stage 1n the process. The upper limits are obtained by adding the
upper limits of each phase of the fuel cycle.
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Diagrams similar to Figure B-2, can be drawn for the number
of person days lost due to accidents, and also for the number of person
days lost due to disease. In order to provide a comprehensive overview
of the health impacts of the fuel cycle, flow diagrams for deaths, acci-
dents and diseases are superimposed in Figure B-3. Hence, this figure pro-
vides an overview of the "Routine" annual health effects associated with
a 1,000 megawatt coal fired electrical power system with lime flue gas

desulphurization.

It should be pointed out that the assumption has teen made
that the lime flue gas desulphurization scruboer removes between 80 and
90%Z of the sulphur in the flue gas, this performance is considerably
better than that of the typical power plant today. Since the typical
power plant does not have a scrubber to remove the sulphur oxides. It
should further be noted that the calculations of deaths and diseases from
the conversion to electricity phase of the fuel cycle includes only the
health impacts of oxides of sulphur. Other pollutants such as oxides of
nitrogen, ozone and carbon monoxides also have an effect but are not in-
cluded in this analyses. In calculating the person days lost due to

disease the following assumptions have been made:

° an aggravation of chronic respiratory disease, results

in 5 days lost.

® an asthma attack, results in an average of 1 day lost.
o respiratory disease in children, result in a lost of

1 day.
® aggravation of cardiolpulmonary disease results in

1 day lost.

The routine annual health effects associated with a 1,000
megawatt coal fired electrical power system with fluidized bed combus-
tion are shown in Figure B-4. A quick comparison of Figure B-4 and Fig-
ure B-3 reveals that the number of accidents for the two systems is iden-
tical, since same amouunt of coal must be harvested, upgraded, transported,
converted to electricity, and disposed of as final waste. The deaths
estimates are also identical with the exception of the deaths due to

conversion to electricity are decreased since the fluidized bed system
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is more efficient in removinz sulphur. The assumption has been made that
between 90% and 957 of the sulphur is removed by the fluidized bed desul-
phurization system. This also causes a significant decrease in the per-
son days lost due to disease associated with conversion to electricity.
Hence, the coal fired system with fluidized bed comtuction is superior

to that of the coal fired system with lime flue gas desulphurization

from a health point-of-view.

The "routine'" annual health effects associated with a 1,000
megawatt electrical power system fired with low BTU gas with combined
cycle combustion are shown in Figure B-5. Once again, the person days
lost due to accidents for the low BTU gas system appears to be very simi-
lar to the results presented for both the fluidized bed system and the
flue gas desulphurization system. The reason for this similarity is that
the accidents due to mining and transporting coal contribute signifi-
cantly more person days lost than accident assoicated with either coal
gasification, or conversion to electricity. In the example shown in
Figure B-5 the assumption has been made that the coal must be transported
to a coal gasification plant which is co-located with the electrical con-
version plant. If the mine, gasification plant, and the electrical power
generation plant were co-located, then the public accident impact could
be decreased to approximately zero. Hnwever, this type of co-location
may not always be possible due to such factors as shortages of water
which may be required for the coal gasification process, economic and
environmental considerations. The coal gasification process is assumed
to be quite efficient in removing sulphur. The sulphur removal effi-
ciency is thought to vary between 987 and 99.7%! Hence, the deaths asso-
ciated with conversion to electricity are now estimated to range between
0.1 to 3.7 deaths per 1,000 megawatt-year. These death estimates are
significantly smaller than those estimated for either the scrubber or
the fluidized bed systems. Similar large reductions are also shown in
Figure B-5 for the person days lost due to disease. These numbers are
now estimated to range between 170 and 113,000 person days lost per
1,000 megawatt-year. We currently do not have sufficiently accurate
data available to estimate the occupational health impact associated
with coal gasification. The National Institute of Occupational Safety
and Health, 'NIOSH", is in the prncess of funding two programs in this
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area. Based on tke health information available, the low BTU system is
preferable to both the fluidized bed system, and the lime flue gas

desulphurization system.

The "routine" annual health effects associated with a 1,000
megawatt residual fuel oil fired electrical power system with lime flue
gas desulphurization are shown in Figure B-6. This system is included
in the report for the sake of completeness; however, it is expected that
due to problems of scarcity and price of o0il near the end of this cen-
tury that the use of o0il for generating electrical power will be decreas-
ing. Figure B-6 shows that the residual fuel oil fired system is char-
acterized by a dramatic decrease in the number of person days lost due
to accidents. A residual fuel oil system indicates a total of approxi-
mately 700 person days lost per year due to accidents. This compares to
approximately 12,000 person days lost per year due to accident for any
of the coal fired systems. However, this advantage is accompanied by
the disadvantage that the fuel is assumed to have between 0.6 and 1%
sulphur by weight and the plant sulphur removal efficiency varying from
0 to 90%. These two factors caused the total deaths and person days lost
due to disease for the residual fuel o0il system to be quite similar to
the values shown in Figure B-3 for a coal-fired system with lime flue

gas desulphurization.

Nuclear Systems ''Routine' Health Impacts

We shall now contrast the "routine" health impacts of the
previous fossil fuel systems with those impacts associated with nuclear

electric power systems. The nuclear systems ccnsidered will be the

following:
® Light water reactor with uranium recycle.
® Light water reactor with plutonium recycle.
° Liquid metal fast breeder reactor.
® High temperature gas reactor.

To compare the contributions of each step in the nuclear

fuel cycle to the "routine" health effects, the scales used for deaths,
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accidents, and diszases had to be reduced considerably from those used in
the fossil fuel examplcs. The death scale is reduced by a factor cf 60.
The accident scale is reduced by a factor of 17, and the disease scale

is reduced by a factor of 62,000. These reductions were required in
order to be able to disnlay the relative contribution of various phases

of the fuel cycle for the nuclear power system.

It should be pointed out that these '"routine" annual health
effects do not include any impact at all due to possible catastrophic
accidents at the Isotope separation plant, at tune nuclear power genera-
tion plant, during transportation, or during either interim or perpetual
storage of the high level radioactive wastes. Very little data is avail-
albe in many of these areas. The Rasinusen Report, Ref. 57, treats only
the impact of the nuclear power plant itself *n terms of a probabilistic
analyses of the likelihood of given events taking place, and the severity
associated with such events. This report is currentiy the center of con-~
siderable controversy. Hence it is once again emphasized that the dia-
grams to be shown only include "routine" annual health effects, and do
not include effects of a catastrophic nature or effects associated with

perpetual storage of radioactive wastes.

In this nuclear fuel cycle the upgrade duel phase includes
conversion of USOB to UF6’ Isotope separation, conversion and fabrication
of fuel rods. The final waste phase includes: 1) 150 day storage of the
spent fuel rods, 2) shipment of the spent fuel rods to a reprocessing
plant where the U235 and possible plutonium are removed from the spent
fuel rods to be sent back into isotope separation, 3) interim 5 year
storage of high level waste and 4) shipment to a Federal repository for
perpetual storage of high level and other wastes. It should be pointed
out that this definition of final waste does not include any radioactive
waste that is assoclated with deactivation of any of these nuclear elec-

trical power systems.

The "routine”" annual health effects associated with a 1,000
megawatt light water reactor (LWR) electrical power system are shown in
Figure B-7. The principle contributions to person days lost due to acci-
dents occurs during the mining operation. These losses are quite com-

parable to tl.ose shown previcusly for the residual fuel oil system.
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Figure B-7 indicatc3 a maximum of about 0.50 deaths per year
for the light. water reactor system. This is a factor of six less than
the minimum estimate for the low BTU gas fossil fuel system. The person
days lost due to accidents for the light water reactor system are also
significantly less than those associated with the fossil fuel system.
However, this is based on the assumption that Uranium ores remain at
today's high concentrations. In the future, lower grade ores will be
mined. Since the number of accidents is a function of the amount of
material mined, there will be an increase in the accident person days

lost.

An examination of Figure B-7 indicates that the upper limit
of annual person days lost due to disease associated with the light water
reactor ie approximately 31. This upper limit cont.racts with the lower
limit estimatrd for the coal fired electrical power system with lime
flue gas desulfurization of about 5000. Hence the "routine" disease
impact of the coal syctem is at least 100 times worse then the "routine"

disease impact of the light water reactor system.

If Plutonium is recycled from the reprocessing plant back
into the fuel rods, the estimated health impacts might decrease slightly.
For example, the person days lost due to disease is decreased to approx-
imately 11 compared to 42 for the light water reactor. The "routine"
annual health effects associated with a 1000 megawatts light water re-
actor electrical power system with plutonium recycle are shown in Fig-
ure B-8, The number of total deaths for this system is about 0.3 deaths
annually which represents an improvement over the light water reactor.
The accident rate, in terms of person days lost per year, is approxi-
mately the same for both systems. Hence the light water reactor with
plutonium recycle represents a slight improvement over the plain light
water reactor from a "routine" health point-of-view. This system may be
not be an unmixed blessing however, due to potential problems associated

with sabotage and diversions of the plutonium.

A Health Effects Flow Diagram for the 'routine' annual health
effects associated with 1000 megawatts electrical liquid metal fast
breeder reactor electrical power system are shown in Figure B-9. 1In the

238

liquid metal fast breeder reactor LMFBR system, U 1is converted to
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Pu239. Thie plutonium acts as a fuel similar to the U235 used in the

light water reactor. Hence the liquid metal fast breeder reactor system
has the virtue of greatly increasing the energy utilization obtainable
from uranium ore. This causes a large decrease in the amount of material
that needs to be harvested. For example, the accidents associated with
harvesting fuel for the LMFBR system range between 1.6 and 5.0 person
days lost per year. These numbers are two orders of magnitude smaller
than those shown in Figure B-7 for the light water reactor system. An-
other reduction in accidents takes place during the upgrading of fuel
step for the LMFBR. This step is characterized by a 100 person days

lost annually. The complete fuel cycle for the liquid metal fast breeder
reactor estimates an upper limit of approximately 180 person days lost
per year annually. This is in contrast to approximately 800 person

days lost annually with the light water reactor system. Hence the LMFBR
represents a considerable improvement in "routine" accident rate over

that available with the light water reactor.

The disease rates of both systems are essentially identical.
It snould be noted that the impact of catastrophic accidents with the
liquid metal fast breeder reactor may be considerable more severe than

that associated with the light water reactor.

The routine annual health effects associated with a 1000
megawatt electrical high temperature gas reactor electrical power
system are shown in Figure B-10. The overall fuel cycle person days
lost per year due to disease for the system is similar to that of the
light water reactor shown in Figure B-7. However, the overall death
and accidents associated with the high temperature gas reactor are
decreased somewhat with respect tu those associated with the light
water reactor, The person days lost due to accidents have been
decreased from approximately 900 to approximately 550. The deaths
have been decreased from a maximum of 0.5 deaths per year to a value
of approximately 0.3 deaths per year. The estimates of effects from
the HTGR and LMFBR systems a.2 more speculative than for LWRs since

there is less operating experience.
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